University of Groningen Organization of Replication of Ribosomal DNA in Saccharomyces cerevisiae

Using recently developed replicon mapping techniques, we have analyzed the replication of the ribosomal DNA in Saccharomyces cerevisiae. The results show that (i) the functional origin of replication colocalizes with an autonomously replicating sequence element previously mapped to the nontranscribed spacer region, (ii) only a fraction of the potential origins are utilized in a single S phase, and (iii) the replication forks moving counter to the direction of transcription of the 37S precursor RNA stop at or near the termination site of transcription. Consequently, most ribosomal DNA is replicated unidirectionally by forks moving in the direction of transcription and most replicons are larger than the repeat unit. The significance of this finding for the replication of abundantly transcribed genes is discussed.

[1]  K. Skryabin,et al.  The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae. , 1980, Nucleic Acids Research.

[2]  L. Hartwell,et al.  Genetic analysis of the mitotic transmission of minichromosomes , 1985, Cell.

[3]  A. Correspondent Eukaryotic DNA Replication , 1973, Nature.

[4]  Ronald W. Davis,et al.  Mitotic stability of yeast chromosomes: A colony color assay that measures nondisjunction and chromosome loss , 1985, Cell.

[5]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R. Planta,et al.  Structure and function of the nontranscribed spacer regions of yeast rDNA. , 1984, Nucleic acids research.

[7]  J. Huberman,et al.  The in vivo replication origin of the yeast 2μm plasmid , 1987, Cell.

[8]  J. Huberman,et al.  Direction of DNA replication in mammalian cells. , 1973, Journal of molecular biology.

[9]  W. Rutter,et al.  Ribosomal RNA genes of Saccharomyces cerevisiae. II. Physical map and nucleotide sequence of the 5 S ribosomal RNA gene and adjacent intergenic regions. , 1977, The Journal of biological chemistry.

[10]  K. Skryabin,et al.  The structure of the yeast ribosomal RNA genes. 3. Precise mapping of the 18 S and 25 S rRNA genes and structure of the adjacent regions. , 1981, Nucleic acids research.

[11]  B. J. Brewer,et al.  When polymerases collide: Replication and the transcriptional organization of the E. coli chromosome , 1988, Cell.

[12]  A. Riggs,et al.  On the mechanism of DNA replication in mammalian chromosomes. , 1968, Journal of molecular biology.

[13]  C. Newlon,et al.  Close association of a DNA replication origin and an ARS element on chromosome III of the yeast, Saccharomyces cerevisiae. , 1988, Nucleic acids research.

[14]  R. W. Davis,et al.  Isolation and characterisation of a yeast chromosomal replicator , 1979, Nature.

[15]  O. Miller,et al.  Electron microscopic study of Saccharomyces cerevisiae rDNA chromatin replication , 1986, Molecular and cellular biology.

[16]  S. McKnight,et al.  Electron microscopic analysis of chromosome metabolism in the Drosophila melanogaster embryo. , 1978, Cold Spring Harbor symposia on quantitative biology.

[17]  K. Skryabin,et al.  The structure of the yeast ribosomal RNA genes. 4. Complete sequence of the 25 S rRNA gene from Saccharomyces cerevisae. , 1981, Nucleic acids research.

[18]  T. Petes,et al.  Tandemly arranged variant 5S ribosomal RNA genes in the yeast Saccharomyces cerevisiae. , 1984, Nucleic acids research.

[19]  D. Jackson,et al.  A general method for preparing chromatin containing intact DNA. , 1985, The EMBO journal.

[20]  O. Westergaard,et al.  A high affinity topoisomerase I binding sequence is clustered at DNAase I hypersensitive sites in tetrahymena R-chromatin , 1985, Cell.

[21]  R. Planta,et al.  3′‐End formation of transcripts from the yeast rRNA operon. , 1986, The EMBO journal.

[22]  J. Broach,et al.  Localization and sequence analysis of yeast origins of DNA replication. , 1983, Cold Spring Harbor symposia on quantitative biology.

[23]  W. Rutter,et al.  Ribosomal RNA genes of Saccharomyces cerevisiae. I. Physical map of the repeating unit and location of the regions coding for 5 S, 5.8 S, 18 S, and 25 S ribosomal RNAs. , 1977, The Journal of biological chemistry.

[24]  A. Feinberg,et al.  A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. , 1983, Analytical biochemistry.

[25]  C. Bjerknes,et al.  Replication termini in the rDNA of synchronized pea root cells (Pisum sativum) , 1988, The EMBO journal.

[26]  W. L. Fangman,et al.  The localization of replication origins on ARS plasmids in S. cerevisiae , 1987, Cell.

[27]  Ronald W. Davis,et al.  Unique arrangement of coding sequences for 5 S, 5.8 S, 18 S and 25 S ribosomal RNA in Saccharomyces cerevisiae as determined by R-loop and hybridization analysis. , 1978, Journal of molecular biology.

[28]  J. Huberman,et al.  The in vivo replication origin of the yeast 2 microns plasmid. , 1987, Cell.

[29]  K. Skryabin,et al.  The structure of the yeast ribosomal RNA genes. 2. The nucleotide sequence of the initiation site for ribosomal RNA transcription. , 1980, Nucleic acids research.

[30]  J. Huberman Visualization of replicating mammalian and T4 bacteriophage DNA. , 1968, Cold Spring Harbor symposia on quantitative biology.

[31]  J. Huberman,et al.  Two-dimensional gel electrophoretic method for mapping DNA replicons , 1988, Molecular and cellular biology.

[32]  T. Petes,et al.  Analysis of the junction between ribosomal RNA genes and single-copy chromosomal sequences in the yeast Saccharomyces cerevisiae , 1982, Cell.