On Virtual Crossing Number Estimates For Virtual Links

We address the question of detecting minimal virtual diagrams with respect to the number of virtual crossings. This problem is closely connected to the problem of detecting the minimal number of additional intersection points for a generic immersion of a singular link in $R^{2}$. We tackle this problem by the so-called $\xi$-polynomial whose leading (lowest) degree naturally estimates the virtual crossing number. Several sufficient conditions for minimality together with infinite series of new examples are given. We also state several open questions about $M$-diagrams, which are minimal according to our sufficient conditions.

[1]  L. Kauffman,et al.  Virtual Crossing Number and the Arrow Polynomial , 2008, 0810.3858.

[2]  Y. Miyazawa MAGNETIC GRAPHS AND AN INVARIANT FOR VIRTUAL LINKS , 2006 .

[3]  R. Fenn,et al.  QUATERNIONIC INVARIANTS OF VIRTUAL KNOTS AND LINKS , 2006, math/0610484.

[4]  E. Teplyakov On Roots of the ξ-Polynomial , 2005 .

[5]  L. Kauffman,et al.  Virtual knots and links , 2005, math/0502014.

[6]  L. Kauffman,et al.  Biquandles and virtual links , 2004 .

[7]  L. Kauffman,et al.  Virtual knot theory-unsolved problems , 2004, math/0405428.

[8]  G. Kuperberg What is a virtual link , 2002, math/0208039.

[9]  J. Sawollek An Orientation-Sensitive Vassiliev Invariant for Virtual Knots , 2002, math/0203123.

[10]  L. Kauffman,et al.  Bi-oriented Quantum Algebras, and a Generalized Alexander Polynomial for Virtual Links , 2001, math/0112280.

[11]  Susan G. Williams,et al.  ALEXANDER GROUPS AND VIRTUAL LINKS , 2001 .

[12]  J. Sawollek On Alexander-Conway Polynomials for Virtual Knots and Links , 1999, math/9912173.

[13]  L. Kauffman Virtual Knot Theory , 1998, Eur. J. Comb..

[14]  M. Polyak,et al.  Finite Type Invariants of Classical and Virtual Knots , 1998, math/9810073.

[15]  K. Murasugi Jones polynomials and classical conjectures in knot theory. II , 1987, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  V. Manturov The Khovanov complex and minimal knot diagrams , 2006 .

[17]  Morwen Thistlethwaite,et al.  A spanning tree expansion of the jones polynomial , 1987 .

[18]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .