Monolithic Power-Combining Techniques for Watt-Level 2.4-GHz CMOS Power Amplifiers for WLAN Applications

Two monolithic power combining schemes for CMOS power amplifiers (PAs)-distributed LC and current-mode transformer-based-are compared. Fully integrated 2.4-GHz PAs using these techniques were fabricated in a 65-nm standard CMOS technology. From a 3.3-V supply, the distributed-LC combined PA produces a saturated power of 31.5 dBm with peak power-added efficiency (PAE) of 25%. The current-mode transformer-based PA combiner produces 33.5-dBm saturated power with 37.6% peak PAE. With gm -linearization and digital pre-distortion, these PAs transmit 25.5 and 26.4 dBm with - 25-dB error vector magnitude for a 54-Mb/s orthogonal frequency division multiplexing signal, respectively.

[1]  Jiashu Chen,et al.  Design of CMOS Power Amplifiers , 2012, IEEE Transactions on Microwave Theory and Techniques.

[2]  Candice King,et al.  Fundamentals of wireless communications , 2013, 2013 IEEE Rural Electric Power Conference (REPC).

[3]  Wai-Kai Chen,et al.  The circuits and filters handbook , 2009 .

[4]  Mark Ruberto,et al.  Dual-band CMOS transceiver with highly integrated front-end for 450Mb/s 802.11n systems , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[5]  A.M. Niknejad,et al.  A Fully Integrated Dual-Mode Highly Linear 2.4 GHz CMOS Power Amplifier for 4G WiMax Applications , 2009, IEEE Journal of Solid-State Circuits.

[6]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[7]  Lawrence E. Larson,et al.  Linearized Dual-Band Power Amplifiers With Integrated Baluns in 65 nm CMOS for a 2$\, \times \,$2 802.11n MIMO WLAN SoC , 2010, IEEE Journal of Solid-State Circuits.

[8]  Gang Liu,et al.  A 5.8 GHz 1 V Linear Power Amplifier Using a Novel On-Chip Transformer Power Combiner in Standard 90 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[9]  Lawrence E. Larson,et al.  A 65nm CMOS 2.4GHz 31.5dBm power amplifier with a distributed LC power-combining network and improved linearization for WLAN applications , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[10]  Hooman Darabi,et al.  A multistandard, multiband SoC with integrated BT, FM, WLAN radios and integrated power amplifier , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[11]  Qiang Li,et al.  A Fully Integrated MIMO Multiband Direct Conversion CMOS Transceiver for WLAN Applications (802.11n) , 2007, IEEE Journal of Solid-State Circuits.

[12]  Babak Vakili-Amini,et al.  A 65nm dual-band 3-stream 802.11n MIMO WLAN SoC , 2011, 2011 IEEE International Solid-State Circuits Conference.

[13]  E. J. Wilkinson An N-Way Hybrid Power Divider , 1960 .

[14]  Mark Ruberto,et al.  A 1x2 MIMO Multi-Band CMOS Transceiver with an Integrated Front-End in 90nm CMOS for 802.11a/g/n WLAN Applications , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[15]  Lawrence E. Larson,et al.  An integrated 33.5dBm linear 2.4GHz power amplifier in 65nm CMOS for WLAN applications , 2010, IEEE Custom Integrated Circuits Conference 2010.

[16]  Xudong Jiang,et al.  A 4-in-1 (WiFi/BT/FM/GPS) connectivity SoC with enhanced co-existence performance in 65nm CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[17]  Ying-Hsi Lin,et al.  A CMOS transceiver with internal PA and digital pre-distortion for WLAN 802.11a/b/g/n Applications , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.