Ensuring near-optimum homogeneity and densification levels in nano-reinforced ceramics

The development of a new generation of high temperature ceramic materials for aerospace applications, reinforced at a scale closer to the molecular level and three orders of magnitude less than conventional fibrous reinforcements, by embedded carbon nanotubes, has recently emerged as a uniquely challenging scientific effort. The properties of such materials depend strongly on two main factors: i) the homogeneity of the dispersion of the hydrophobic medium throughout the ceramic volume and ii) the ultimate density of the resultant product after sintering of the green body at the high-temperatures and pressures required for ceramic consolidation. The present works reports the establishment of two independent experimental strategies which ensure achievement of near perfect levels of tube dispersion homogeneity and fully dense final products. The proposed methodologies are validated across non-destructive evaluation data of materials performance.

[1]  Silvia Tabasso,et al.  Enabling technologies built on a sonochemical platform: challenges and opportunities. , 2015, Ultrasonics sonochemistry.

[2]  J. Xie,et al.  Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. , 2009, Nano letters.

[3]  R. Krupke,et al.  The mechanism of cavitation-induced scission of single-walled carbon nanotubes. , 2007, The journal of physical chemistry. B.

[4]  Phaedon Avouris,et al.  Carbon-nanotube photonics and optoelectronics , 2008 .

[5]  Howard Wang,et al.  Dispersing Single-Walled Carbon Nanotubes with Surfactants: A Small Angle Neutron Scattering Study , 2004 .

[6]  Nadia Grossiord,et al.  Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution , 2007 .

[7]  H. Wagner,et al.  The role of surfactants in dispersion of carbon nanotubes. , 2006, Advances in colloid and interface science.

[8]  M. Maugey,et al.  In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[9]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[10]  Xuejun Wang,et al.  Aggregation kinetics of SDBS-dispersed carbon nanotubes in different aqueous suspensions , 2012 .

[11]  J. Tour,et al.  Covalent Functionalization of Single-Walled Carbon Nanotubes for Materials Applications , 2004 .

[12]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[13]  K. Kim,et al.  Noncovalent functionalization of multiwalled carbon nanotubes using graft copolymer with naphthalene and its application as a reinforcing filler for poly(styrene‐co‐acrylonitrile) , 2010 .

[14]  Yingge Zhang,et al.  The application of carbon nanotubes in target drug delivery systems for cancer therapies , 2011, Nanoscale research letters.

[15]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[16]  R. Krishnamoorti,et al.  Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. , 2004, Journal of the American Chemical Society.

[17]  D. Tasis,et al.  Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties , 2010 .

[18]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[19]  Y. Y. Huang,et al.  Strength of Nanotubes, Filaments, and Nanowires From Sonication‐Induced Scission , 2009, 0907.3176.

[20]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[21]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[22]  Peter J. F. Harris,et al.  Carbon nanotube composites , 2004 .

[23]  V. C. Moore,et al.  Individually suspended single-walled carbon nanotubes in various surfactants , 2003 .

[24]  V. C. Moore,et al.  The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[25]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[26]  Malcolm L. H. Green,et al.  Mechanical damage of carbon nanotubes by ultrasound , 1996 .

[27]  Neil Rodrigues,et al.  Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes , 2022 .

[28]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[29]  Daniel E. Resasco,et al.  Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS , 2003 .

[30]  John Parthenios,et al.  Chemical oxidation of multiwalled carbon nanotubes , 2008 .

[31]  Micah J. Green,et al.  Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication , 2012, Proceedings of the National Academy of Sciences.

[32]  C. J. Kerr,et al.  Effect of filament aspect ratio on the dielectric response of multiwalled carbon nanotube composites , 2011 .

[33]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[34]  Claire E Lenehan,et al.  Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. , 2010, The journal of physical chemistry. B.

[35]  P. Ajayan,et al.  NONCOVALENT FUNCTIONALIZATION OF GRAPHITE AND CARBON NANOTUBES WITH POLYMER MULTILAYERS AND GOLD NANOPARTICLES , 2003 .

[36]  Paul A. Warburton,et al.  Characterization of the disaggregation state of single-walled carbon nanotube bundles by dielectrophoresis and Raman spectroscopy , 2008 .

[37]  X. Lou,et al.  Synthesis of pyrene-containing polymers and noncovalent sidewall functionalization of multiwalled carbon nanotubes , 2004 .

[38]  L. Schadler,et al.  Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension. , 2004, Journal of colloid and interface science.

[39]  M. Maugey,et al.  Kinetics of Nanotube and Microfiber Scission under Sonication , 2009 .

[40]  K. Mukhopadhyay,et al.  Conversion of carbon nanotubes to carbon nanofibers by sonication , 2002 .

[41]  T. Peijs,et al.  Effects of dispersion surfactants on the properties of ceramic - carbon nanotube (CNT) nanocomposites , 2014 .

[42]  Gad Marom,et al.  Dispersions of Surface‐Modified Carbon Nanotubes in Water‐Soluble and Water‐Insoluble Polymers , 2006 .

[43]  Inderpreet Kaur,et al.  Comparative study of carbon nanotube dispersion using surfactants. , 2008, Journal of colloid and interface science.

[44]  M. Strano,et al.  Using Raman Spectroscopy to Elucidate the Aggregation State of Single-Walled Carbon Nanotubes , 2004 .

[45]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[46]  W. Sigmund,et al.  Electrostatic Interactions between Shortened Multiwall Carbon Nanotubes and Polyelectrolytes , 2003 .

[47]  S. Curran,et al.  Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion: a combined TEM and resonant micro-raman spectroscopy study. , 2005, The journal of physical chemistry. B.

[48]  Arjun G. Yodh,et al.  High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water , 2003 .

[49]  A. Dalton,et al.  Influence of acoustic cavitation on the controlled ultrasonic dispersion of carbon nanotubes. , 2013, The journal of physical chemistry. B.

[50]  M. Hodak,et al.  Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential , 2000 .

[51]  M. Solomon,et al.  Multiangle Depolarized Dynamic Light Scattering of Short Functionalized Single-Walled Carbon Nanotubes , 2009 .