On Measures of Space over Real and Complex Numbers

Defining a notion of space in the real/complex model of computation introduced by Blum, Shub and Smale (BSS) is a challenging task. Though there were some attempts at defining a feasible notion of space over real/complex numbers, none of the measures seem to capture the notion of space in a satisfactory manner.

[1]  Amir Yehudayoff,et al.  Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..

[2]  Heribert Vollmer,et al.  Counting classes and the fine structure between NC1 and L , 2012, Theor. Comput. Sci..

[3]  Felipe Cucker On the Complexity of Quantifier Elimination: the Structural Approach , 1993, Comput. J..

[4]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[5]  Paulin Jacobé de Naurois A Measure of Space for Computing over the Reals , 2006, CiE.

[6]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[7]  Pascal Koiran A Weak Version of the Blum, Shub, and Smale Model , 1997, J. Comput. Syst. Sci..

[8]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[9]  B. V. Raghavendra Rao,et al.  On Weak-Space Complexity over Complex Numbers , 2017, FCT.

[10]  Michael Ben-Or,et al.  Computing Algebraic Formulas Using a Constant Number of Registers , 1992, SIAM J. Comput..

[11]  Christoph Meinel,et al.  p-Projection Reducibility and the Complexity Classes L(nonuniform) and NL(nonuniform) , 1996, MFCS.

[12]  Stephen A. Cook,et al.  Problems Complete for Deterministic Logarithmic Space , 1987, J. Algorithms.

[13]  Heribert Vollmer,et al.  Introduction to Circuit Complexity: A Uniform Approach , 2010 .

[14]  Jacob T. Schwartz Probabilistic algorithms for verification of polynomial identities (invited) , 1979, EUROSAM.

[15]  Felipe Cucker,et al.  Pr != Ncr , 1992, Journal of Complexity.

[16]  Richard P. Brent,et al.  The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.

[17]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[18]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..