High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes

[1]  T. Lenormand,et al.  GENE‐DOSAGE EFFECTS ON FITNESS IN RECENT ADAPTIVE DUPLICATIONS: ace‐1 IN THE MOSQUITO CULEX PIPIENS , 2014, Evolution; international journal of organic evolution.

[2]  F. Chandre,et al.  Insecticide resistance in disease vectors from Mayotte: an opportunity for integrated vector management , 2014, Parasites & Vectors.

[3]  T. Van Leeuwen,et al.  The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. , 2014, Insect biochemistry and molecular biology.

[4]  Jian Wang,et al.  A heterozygous moth genome provides insights into herbivory and detoxification , 2013, Nature Genetics.

[5]  John Vontas,et al.  Gene Amplification, ABC Transporters and Cytochrome P450s: Unraveling the Molecular Basis of Pyrethroid Resistance in the Dengue Vector, Aedes aegypti , 2012, PLoS neglected tropical diseases.

[6]  Dan S. Tawfik,et al.  Divergence and Convergence in Enzyme Evolution: Parallel Evolution of Paraoxonases from Quorum-quenching Lactonases* , 2011, The Journal of Biological Chemistry.

[7]  P. Labbé,et al.  Evolution of Resistance to Insecticide in Disease Vectors , 2011 .

[8]  P. Labbé,et al.  High incidence of ace-1 duplicated haplotypes in resistant Culex pipiens mosquitoes from Algeria. , 2011, Insect biochemistry and molecular biology.

[9]  D. Heckel,et al.  An ABC Transporter Mutation Is Correlated with Insect Resistance to Bacillus thuringiensis Cry1Ac Toxin , 2010, PLoS genetics.

[10]  D. Draganov Lactonases with organophosphatase activity: structural and evolutionary perspectives. , 2010, Chemico-biological interactions.

[11]  J. Haldane,et al.  SEX LINKAGE AND SEX DETERMINATION IN A MOSQUITO, CULEX MOLESTUS , 2010 .

[12]  D. Stoltz,et al.  Paraoxonase 1, quorum sensing, and P. aeruginosa infection: a novel model. , 2010, Advances in experimental medicine and biology.

[13]  P. Labbé,et al.  Multiple duplications of the rare ace-1 mutation F290V in Culex pipiens natural populations. , 2009, Insect biochemistry and molecular biology.

[14]  M. Weill,et al.  Amino-acid substitutions in acetylcholinesterase 1 involved in insecticide resistance in mosquitoes. , 2008, Chemico-biological interactions.

[15]  R. Bellini,et al.  Defence mechanisms against insecticides temephos and diflubenzuron in the mosquito Aedes caspius: the P‐glycoprotein efflux pumps , 2008, Medical and veterinary entomology.

[16]  T. Lenormand,et al.  Independent duplications of the acetylcholinesterase gene conferring insecticide resistance in the mosquito Culex pipiens. , 2007, Molecular biology and evolution.

[17]  M. Weill,et al.  A new amino-acid substitution in acetylcholinesterase 1 confers insecticide resistance to Culex pipiens mosquitoes from Cyprus. , 2007, Insect biochemistry and molecular biology.

[18]  F. Rousset,et al.  HIGH WOLBACHIA DENSITY CORRELATES WITH COST OF INFECTION FOR INSECTICIDE RESISTANT CULEX PIPIENS MOSQUITOES , 2006, Evolution; international journal of organic evolution.

[19]  Dan S. Tawfik,et al.  Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes , 2004, Nature Structural &Molecular Biology.

[20]  A. Callaghan,et al.  Evidence for p‐glycoprotein modification of insecticide toxicity in mosquitoes of the Culex pipiens complex , 2002, Medical and veterinary entomology.

[21]  M. Raymond,et al.  Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. , 2002, Genetical research.

[22]  C Watson,et al.  Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters. , 2000, Drug metabolism and disposition: the biological fate of chemicals.

[23]  D. Bourguet,et al.  A new mechanism conferring unprecedented high resistance to chlorpyrifos in Culex pipiens (Diptera: Culicidae). , 1999, Journal of medical entomology.

[24]  R. Feyereisen Insect P450 enzymes. , 1999, Annual review of entomology.

[25]  F. Chandre,et al.  The acetylcholinesterase gene Ace: a diagnostic marker for the Pipiens and Quinquefasciatus forms of the Culex pipiens complex. , 1998, Journal of the American Mosquito Control Association.

[26]  N. Pasteur,et al.  Resistance to organophosphorus and pyrethroid insecticides in Culex pipiens (Diptera: Culicidae) from Tunisia. , 1998, Journal of medical entomology.

[27]  C. Malcolm,et al.  A sex‐linked Ace gene, not linked to insensitive acetylcholinesterase‐mediated insecticide resistance in Culex pipiens , 1998, Insect molecular biology.

[28]  M. Raymond,et al.  Dominance of insecticide resistance presents a plastic response. , 1996, Genetics.

[29]  A. Schönthal,et al.  Gene amplification and multidrug resistance induced by the phosphatase-inhibitory tumor promoter, okadaic acid. , 1995, Carcinogenesis.

[30]  D. Heckel,et al.  Interactions between pesticide genes: model and experiment. , 1989, Genetics.

[31]  F. Bonhomme,et al.  Practical isozyme genetics. , 1988 .

[32]  R. Metcalf,et al.  Carbamate-resistance in mosquitos. Selection of Culex pipiens fatigans Wiedemann (=C. quinquefasciatus Say) for resistance to Baygon. , 1966, Bulletin of the World Health Organization.

[33]  W. Aldridge Serum esterases. I. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. , 1953, The Biochemical journal.

[34]  D. Vincent [Serum esterases]. , 1951, Produits pharmaceutiques.