The Microscopic-Macroscopic Scale Transformation through a Chaos Scenario in the Fractal Space-Time Theory

Considering that the particle movement takes place on fractal curves, the mathematical and physical aspects in fractal space-time theory are analyzed. In such context, the harmonic oscillator probl...

[1]  Peter Weibel,et al.  Space Time Physics and Fractality , 2005 .

[2]  Laurent Nottale,et al.  Scale-relativity and quantization of the universe I. Theoretical framework , 1997 .

[3]  Jacky Cresson Non-differentiable variational principles , 2005 .

[4]  M. Agop,et al.  Experimental and theoretical investigations of a laser-produced aluminum plasma. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[6]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[7]  P. Nica,et al.  Fractal model of the atom and some properties of the matter through an extended model of scale relativity , 2008 .

[8]  Gabriel Ciobanu,et al.  El Naschie’s ε(∞) space–time and new results in scale relativity theories , 2006 .

[9]  Nadezhda M. Bulgakova,et al.  Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet , 1998 .

[10]  P. Ioannou,et al.  Superconductivity by means of the subquantum medium coherence , 2005 .

[11]  Laurent Nottale,et al.  Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .

[12]  Maricel Agop,et al.  On the vacuum status in Weyl–Dirac theory , 2008 .

[13]  Quantum–classical transition in scale relativity , 2004, quant-ph/0609161.

[14]  P. Ioannou,et al.  El Naschie's ε (∞) space-time, hydrodynamic model of scale relativity theory and some applications , 2007 .

[15]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[16]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[17]  H. E. Wilhelm Hydrodynamic model of quantum mechanics , 1970 .