Second order diffractive optical elements in a spatial light modulator with large phase dynamic range

Abstract A study of the diffraction efficiency of a spatial light modulator with a large dynamic phase range is reported. We use a phase-only device that reaches 4 π phase modulation depth for the wavelength of 454 nm. This allows operating phase-only diffractive optical elements in the second harmonic diffraction order, instead of in the usual first diffraction order. This type of implementation shows advantages in terms of resolution and diffraction efficiency. Experimental results are reported for blazed diffractive gratings and diffractive lenses.

[1]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[2]  Jeffrey A. Davis,et al.  Polarization eigenstates for twisted-nematic liquid-crystal displays. , 1998, Applied optics.

[3]  S Bosch,et al.  Diffraction theory of Fresnel lenses encoded in low-resolution devices. , 1994, Applied optics.

[4]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[5]  J. Goodman Introduction to Fourier optics , 1969 .

[6]  José Francisco Algorri Liquid crystal microlenses with gradient refraction index control , 2012 .

[7]  Edward A. Watson,et al.  Optical phased array technology , 1996, Proc. IEEE.

[8]  Ignacio Moreno,et al.  Phasor analysis of binary diffraction gratings with different fill factors , 2007 .

[9]  Claudio Iemmi,et al.  Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display. , 2004, Applied optics.

[10]  G E Sommargren,et al.  Harmonic diffractive lenses. , 1995, Applied optics.

[11]  G. M. Morris,et al.  Spectral properties of multiorder diffractive lenses. , 1995, Applied optics.

[12]  F. Yu,et al.  Simple method for measuring phase modulation in liquid crystal televisions , 1994 .

[13]  Ignacio Moreno,et al.  Extended phase modulation depth in twisted nematic liquid crystal displays. , 2010, Applied optics.

[14]  D M Cottrell,et al.  Multiple imaging phase-encoded optical elements written as programmable spatial light modulators. , 1990, Applied optics.

[15]  Xin Wang,et al.  Tunable reflective lens array based on liquid crystal on silicon. , 2005, Optics express.

[16]  Claudio Iemmi,et al.  Electrical origin and compensation for two sources of degradation of the spatial frequency response exhibited by liquid crystal displays , 2007 .

[17]  P. Yeh Optics of Liquid Crystal Displays , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[18]  Wu,et al.  Birefringence dispersions of liquid crystals. , 1986, Physical review. A, General physics.

[19]  Jeffrey A. Davis,et al.  Encoding amplitude information onto phase-only filters. , 1999, Applied optics.

[20]  M. Yzuel,et al.  Anamorphic and spatial frequency dependent phase modulation on liquid crystal displays. Optimization of the modulation diffraction efficiency. , 2005, Optics express.

[21]  Shin-Tson Wu,et al.  Nematic liquid crystals for spatial light modulators: recent studies , 1986 .

[22]  E Marom,et al.  Phase-only modulation with twisted nematic liquid-crystal spatial light modulators. , 1988, Optics letters.