Multilevel domain decomposition for electronic structure calculations

We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure.

[1]  Martin,et al.  Unconstrained minimization approach for electronic computations that scales linearly with system size. , 1993, Physical review. B, Condensed matter.

[2]  G. V. Chester,et al.  Solid State Physics , 2000 .

[3]  Claude Le Bris,et al.  Computational chemistry from the perspective of numerical analysis , 2005, Acta Numerica.

[4]  Michele Parrinello,et al.  Stochastic linear scaling for metals and nonmetals , 2005 .

[5]  David E. Manolopoulos,et al.  Canonical purification of the density matrix in electronic-structure theory , 1998 .

[6]  D. Brenner,et al.  Convergence Acceleration Scheme for Self-consistent Orthogonal-basis-set Electronic Structure Methods , 2003 .

[7]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[8]  Michele Parrinello,et al.  Linear scaling electronic structure calculations and accurate statistical mechanics sampling with noisy forces , 2006 .

[9]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[10]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[11]  Walter Kohn,et al.  Analytic Properties of Bloch Waves and Wannier Functions , 1959 .

[12]  Colombo,et al.  Efficient linear scaling algorithm for tight-binding molecular dynamics. , 1994, Physical review letters.

[13]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[14]  Kiyoyuki Terakura,et al.  Convergent recursive O(N) method for ab initio tight-binding calculations , 2001 .

[15]  E. Cancès,et al.  Computational quantum chemistry: A primer , 2003 .

[16]  David R. Bowler,et al.  Recent progress in linear scaling ab initio electronic structure techniques , 2002 .

[17]  Peter M. W. Gill,et al.  Molecular integrals Over Gaussian Basis Functions , 1994 .

[18]  U. Hetmaniuk,et al.  A comparison of eigensolvers for large‐scale 3D modal analysis using AMG‐preconditioned iterative methods , 2005 .

[19]  Richard B. Lehoucq,et al.  Multilevel Methods for Eigenspace Computations in Structural Dynamics , 2007 .

[20]  T. Ozaki,et al.  Convergent recursive O(N) calculations for ab initio tight-binding , 2001 .

[21]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[22]  C. Bris,et al.  Can we outperform the DIIS approach for electronic structure calculations , 2000 .

[23]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[24]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[25]  M. Teter,et al.  Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. , 1994, Physical review. B, Condensed matter.

[26]  G. Scuseria,et al.  A black-box self-consistent field convergence algorithm: One step closer , 2002 .

[27]  Maxime Barrault Développement de méthodes rapides pour le calcul de structures électroniques , 2005 .

[28]  Kohn,et al.  Density functional and density matrix method scaling linearly with the number of atoms. , 1996, Physical review letters.

[29]  Weitao Yang,et al.  A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules , 1995 .

[30]  Y Saad,et al.  Numerical methods for large eigenvalue problems : theory and algorithms , 1992 .