An Efficient Multigram Synthesis of Hypericin Improved by a Low Power LED Based Photoreactor

In this work, an improved synthesis process was developed for the multigram production of hypericin. An inexpensive and efficient low power Light Emission Diode (LED) based photoreactor was designed and employed to perform the protohypericin photocyclization reaction allowing its photoconversion in hypericin. This closed system overcomes safety issues related to scale-up hypericin preparation typically described in the literature which combines the use of open systems, organic solvents, and high-power light sources. The photoreactor designed allows a solution to, mainly, the intrinsic effect of hypericin photobleaching inherent to the protohypericin photocyclization reaction, implying an increase in the yield of the final product and consequently the final cost. Using a red-LED based photoreactor, a safety protocol was carried out in a 5-g scale hypericin preparation with quantitative yield.

[1]  M. Novotová,et al.  Assessing light-independent effects of hypericin on cell viability, ultrastructure and metabolism in human glioma and endothelial cells. , 2017, Toxicology in vitro : an international journal published in association with BIBRA.

[2]  P. Miškovský,et al.  Formation of Large Hypericin Aggregates in Giant Unilamellar Vesicles-Experiments and Modeling. , 2017, Biophysical journal.

[3]  M. Do,et al.  Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction , 2016, Biomolecules & therapeutics.

[4]  Shi-lin Chen,et al.  Hypericin: chemical synthesis and biosynthesis. , 2014, Chinese journal of natural medicines.

[5]  N. Hioka,et al.  Singlet oxygen dosimetry using uric acid as a chemical probe: Systematic evaluation , 2012 .

[6]  A. Karioti,et al.  Hypericins as Potential Leads for New Therapeutics , 2010, International journal of molecular sciences.

[7]  H. Falk,et al.  A microwave-assisted synthesis of phenanthroperylene quinones as exemplified with hypericin , 2008 .

[8]  E. Terentjev,et al.  Nonlinear dynamics of absorption and photobleaching of dyes. , 2008, The Journal of chemical physics.

[9]  S. Maury,et al.  Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. , 2005, Plant physiology and biochemistry : PPB.

[10]  W. Haefeli,et al.  Simultaneous determination of hypericin and hyperforin in human plasma with liquid chromatography-tandem mass spectrometry. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[11]  H. Brockmann,et al.  Die umwandlung von Penicilliopsin in Hypericin , 1951, Naturwissenschaften.

[12]  J. Chai,et al.  Facile Synthesis and Radioiodine Labeling of Hypericin , 2004 .

[13]  H. Brockmann,et al.  Zur Synthese des Hypericins , 2004, Naturwissenschaften.

[14]  H. Brockmann,et al.  Pseudo-hypericin, ein neuer, roter Hypericumfarbstoff , 2004, Naturwissenschaften.

[15]  P. Girardin,et al.  Effect of light on hypericins contents in fresh flowering top parts and in an extract of St. John's Wort (Hypericum perforatum). , 2001, Planta medica.

[16]  E. Gruszecka-Kowalik,et al.  AN IMPROVED SYNTHESIS OF HYPERICIN AND RELATED COMPOUNDS , 2000 .

[17]  H. Falk,et al.  Spektroskopische Untersuchung der molekularen Struktur von Hypericin und seinen Salzen , 1999 .

[18]  F. Panzeri,et al.  Identification by high-performance liquid chromatography–diode array detection–mass spectrometry and quantification by high-performance liquid chromatography–UV absorbance detection of active constituents of Hypericum perforatum , 1998 .

[19]  R. Altmann,et al.  Synthesis and Properties of Ionophore Conjugated Hypericin Derivatives , 1998 .

[20]  R. Altmann,et al.  Synthesis and Properties of Hypericins Substituted with Acidic and Basic Residues: Hypericin Tetrasulfonic Acid – A Water Soluble Hypericin Derivative , 1998 .

[21]  K. Zeller,et al.  Determination of naphthodianthrones in plant extracts from Hypericum perforatum L. by liquid chromatography-electrospray mass spectrometry. , 1997, Journal of chromatography. B, Biomedical sciences and applications.

[22]  S. Carpenter,et al.  The synthesis and biological evaluation of hypericin analogs , 1995 .

[23]  H. Falk,et al.  On the synthesis of hypericin by oxidative trimethylemodin anthrone and emodin anthrone dimerization: Isohypericin , 1992 .

[24]  W. Steglich,et al.  Synthesis of Hypericin and Related meso‐Naphthodianthrones by Alkaline Dimerization of Hydroxyanthraquinones , 1977 .

[25]  D. Cameron,et al.  Chemistry of the Coccoidea. II. Condensed polycyclic pigments from two Australian pseudococcids (Hemiptera) , 1976 .

[26]  W. Steglich,et al.  Alkaline condensation of emodin to isohypericin: a simple synthesis of the meso-naphthodianthrone (phenanthro(1,10,9,8-opqra)perylene) system. , 1973, Angewandte Chemie.

[27]  H. Brockmann,et al.  Partialsynthese yon Proto-hypericin und Hypericin aus Penicilliopsin , 1958 .

[28]  H. Brockmann,et al.  Totalsynthese des Hypericins , 1957 .

[29]  H. Brockmann,et al.  Umwandlung von Penicilliopsin in Proto‐hypericin und Hypericin , 1955 .

[30]  R. Muehlmann,et al.  Über die photochemische Cyclisierung des Helianthrons und Dianthrons zum meso‐Naphthodianthron , 1949 .

[31]  H. Brockmann Carotinoide von P. Karrer und E. Jucker, Lehrbücher und Monographien aud dem Gebiete der exakten Wissenschaften, Chemische Reihe Band III. Verlag Birkhäuser, Basel 1948. 388 S. 28 Bilder. Preis broschiert 39.–Fr., geb. 43.– Fr , 1949 .