Closed-Loop Control of a Wing in an Unsteady Flow

The lift response of the separated flow over a wing to different actuator input disturbances is used to obtain linear models useful for closed-loop control design. The wing has a small aspect ratio, a semi-circular planform, and is fully stalled at a 20 o angle of attack. Individual pulse-like disturbances and step-input disturbances with randomized frequency were inputs to the actuator, and the lift coefficient increments were output signals. The “prediction error method” system identification technique was used to obtain two linear models of the separated flow. A 4 th order model reproduced the non-minimum phase behavior of the pulse input, but did not work well for control purposes. The second model identified was limited to first order. The first order model proved to be useful for designing a proportional-integral feedback controller capable of suppressing lift oscillations in unsteady flows. Good suppression of lift oscillations was observed in the experiment after a step change in wind tunnel flow speed occurred. When the control system was tested with a randomized freestream velocity, it reduced the root-mean-square lift oscillation by 50 percent relative to the uncontrolled case.