Optical properties of surface plasmon resonances of coupled metallic nanorods.

We present a systematic study of optical antenna arrays, in which the effects of coupling between the antennas, as well as of the antenna length, on the reflection spectra are investigated and compared. Such arrays can be fabricated on the facet of a fiber, and we propose a photonic device, a plasmonic optical antenna fiber probe, that can potentially be used for in-situ chemical and biological detection and surface-enhanced Raman scattering.

[1]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[2]  J. Kottmann,et al.  Spectral response of plasmon resonant nanoparticles with a non-regular shape. , 2000, Optics express.

[3]  Bernhard Lamprecht,et al.  Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering , 2002 .

[4]  George C. Schatz,et al.  Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields , 2005 .

[5]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[6]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.

[7]  Harald Ditlbacher,et al.  Plasmon dispersion relation of Au and Ag nanowires , 2003 .

[8]  Vladimir M. Shalaev,et al.  Resonant Field Enhancements from Metal Nanoparticle Arrays , 2004 .

[9]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[10]  Pierre-Michel Adam,et al.  Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement , 2006 .

[11]  Anika Kinkhabwala,et al.  Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. , 2006, The Journal of chemical physics.

[12]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[13]  A. Hohenau,et al.  Gold particle interaction in regular arrays probed by surface enhanced Raman scattering. , 2004, The Journal of chemical physics.

[14]  George C. Schatz,et al.  Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles , 2001 .

[15]  Pierre-Michel Adam,et al.  Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays , 2005 .

[16]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[17]  Qi-Huo Wei,et al.  Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains , 2004 .

[18]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[19]  C. Mirkin,et al.  Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. , 2006, Nano letters.

[20]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[21]  Franz R. Aussenegg,et al.  Evidence of multipolar excitations in surface enhanced Raman scattering , 2005 .

[22]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[23]  A. Hohenau,et al.  Imaging surface plasmon of gold nanoparticle arrays by far-field Raman scattering. , 2005, Nano letters.

[24]  J. Kottmann,et al.  Retardation-induced plasmon resonances in coupled nanoparticles. , 2001, Optics letters.