Exploration on the combustion chemistry of p-xylene: A comprehensive study over wide conditions and comparison among C8H10 isomers

[1]  F. Battin‐Leclerc,et al.  A comparative study of the oxidation of toluene and the three isomers of xylene , 2023, Combustion and Flame.

[2]  K. Kohse-Höinghaus Combustion, Chemistry, and Carbon Neutrality. , 2023, Chemical reviews.

[3]  G. Kukkadapu,et al.  Molecular-growth pathways in premixed flames of benzene and toluene doped with propyne , 2022, Combustion and Flame.

[4]  P. Dagaut,et al.  Exploring pyrolysis and oxidation chemistry of o-xylene at various pressures with special concerns on PAH formation , 2021 .

[5]  Long Zhao,et al.  Insights into the Decomposition and Oxidation Chemistry of p-Xylene in Laminar Premixed Flames. , 2021, The journal of physical chemistry. A.

[6]  M. Zagidullin,et al.  Formation of Phenanthrene via Recombination of Indenyl and Cyclopentadienyl Radicals: A Theoretical Study. , 2020, The journal of physical chemistry. A.

[7]  G. Nathan,et al.  A Review of Terminology Used to Describe Soot Formation and Evolution under Combustion and Pyrolytic Conditions. , 2020, ACS nano.

[8]  M. Frenklach,et al.  Formation of phenanthrenyl radicals via the reaction of acenaphthyl with acetylene , 2020 .

[9]  A. Mebel,et al.  Formation of phenanthrene via H‐assisted isomerization of 2‐ethynylbiphenyl produced in the reaction of phenyl with phenylacetylene , 2020 .

[10]  F. Hirsch,et al.  Do Xylylenes Isomerize in Pyrolysis? , 2020, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  R. Hoffmann,et al.  Do Diradicals Behave Like Radicals? , 2019, Chemical reviews.

[12]  A. Konnov,et al.  Experimental and kinetic modeling study of para-xylene chemistry in laminar premixed flames , 2019, Fuel.

[13]  M. Zagidullin,et al.  VUV Photoionization Study of the Formation of the Simplest Polycyclic Aromatic Hydrocarbon: Naphthalene (C10H8). , 2018, The journal of physical chemistry letters.

[14]  Aamir Farooq,et al.  Recent progress in gasoline surrogate fuels , 2018 .

[15]  M. Steglich,et al.  Photodissociation dynamics of the ortho- and para-xylyl radicals. , 2017, The Journal of chemical physics.

[16]  R. Kaiser,et al.  Formation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames. , 2017, The journal of physical chemistry. A.

[17]  Jiuzhong Yang,et al.  The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research. , 2016, Journal of synchrotron radiation.

[18]  P. Dagaut,et al.  A comprehensive experimental and kinetic modeling study of n-propylbenzene combustion , 2016 .

[19]  A. Trevitt,et al.  Isomer-specific product detection of gas-phase xylyl radical rearrangement and decomposition using VUV synchrotron photoionization. , 2014, Journal of Physical Chemistry A.

[20]  A. Trevitt,et al.  Direct Observation of para-Xylylene as the Decomposition Product of the meta-Xylyl Radical Using VUV Synchrotron Radiation , 2013 .

[21]  A. Mebel,et al.  Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring. , 2013, The journal of physical chemistry. A.

[22]  Zhanjun Cheng,et al.  An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure , 2012 .

[23]  Chunsheng Ji,et al.  Propagation and extinction of benzene and alkylated benzene flames , 2012 .

[24]  D. L. Miller,et al.  Preignition and Autoignition Chemistry of the Xylene Isomers , 2011 .

[25]  Charles J. Mueller,et al.  Recent progress in the development of diesel surrogate fuels , 2009 .

[26]  J. Bozzelli,et al.  Decomposition of methylbenzyl radicals in the pyrolysis and oxidation of xylenes. , 2009, The journal of physical chemistry. A.

[27]  Matthew A. Oehlschlaeger,et al.  The autoignition of C8H10 aromatics at moderate temperatures and elevated pressures , 2009 .

[28]  Tim Edwards,et al.  Chemical Class Composition of Commercial Jet Fuels and Other Specialty Kerosene Fuels , 2006 .

[29]  P. Glaude,et al.  Experimental and modeling study of the oxidation of xylenes , 2006, physics/0603102.

[30]  P. Dagaut,et al.  Experimental kinetic study of the oxidation of p-xylene in a JSR and comprehensive detailed chemical kinetic modeling , 2005 .

[31]  P. Glarborg,et al.  Nitrogen chemistry during burnout in fuel-staged combustion , 1996 .

[32]  Peter Glarborg,et al.  A flow reactor study of HNCO oxidation chemistry , 1994 .

[33]  A. Datye,et al.  The effect of alumina structure on surface sites for alcohol dehydration , 1992 .

[34]  Edward R. Ritter,et al.  THERM: THERMODYNAMIC PROPERTY ESTIMATION FOR GAS PHASE RADICALS and MOLECULES , 1991, Proceeding of Data For Discovery.

[35]  J. L. Emdee,et al.  High-Temperature Oxidation Mechanisms of m- and p-Xylene , 1991 .

[36]  T. Just,et al.  High temperature reactions of benzyl radicals , 1990 .

[37]  M. Stiles,et al.  Reaction of Benzyne with Benzene and Naphthalene , 1963 .

[38]  Jiuzhong Yang,et al.  Combustion chemistry of aromatic hydrocarbons , 2023, Progress in Energy and Combustion Science.

[39]  N. Chaumeix,et al.  Insights into pyrolysis kinetics of xylene isomers behind reflected shock waves , 2022, Combustion and Flame.

[40]  Jiuzhong Yang,et al.  Unraveling chemical structure of laminar premixed tetralin flames at low pressure with photoionization mass spectrometry and kinetic modeling , 2020 .

[41]  C. Westbrook,et al.  Kinetic modeling study of surrogate components for gasoline, jet and diesel fuels: C7-C11 methylated aromatics , 2019, Proceedings of the Combustion Institute.

[42]  Stephen Dooley,et al.  Surrogate fuels and combustion characteristics of liquid transportation fuels , 2019, Computer Aided Chemical Engineering.

[43]  P. Dagaut,et al.  Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study , 2015 .

[44]  Frederick L. Dryer,et al.  Chemical kinetic and combustion characteristics of transportation fuels , 2015 .

[45]  Wenhao Yuan,et al.  Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation , 2015 .

[46]  R. Fernandes,et al.  The pyrolysis of 2-, 3-, and 4-methylbenzyl radicals behind shock waves , 2002 .

[47]  I. D. Costa,et al.  Direct observation of the rate of H-atom formation in the thermal decomposition of Ortho-, Meta-, and Para-xylene behind shock waves between 1300 and 1800 K , 2000 .

[48]  J. Troe,et al.  Pyrolysis of p-xylene and of 4-methylbenzyl radicals , 1994 .