EXTENDED HAZARD RATE MODELS FOR SOFTWARE RELIABILITY ASSESSMENT WITH EFFECT AT CHANGE-POINT

A software hazard rate model is known as one of the important and useful mathematical models for describing the software failure occurrence phenomenon observed in a testing phase. It is difficult to say that the testing environment always constant during a testing phase due to changing the specification and fault target and so forth. Therefore, taking into consideration of the effect of the change in software reliability growth modeling is expected to conduct more accurate software reliability assessment. In this paper, we develop extended software hazard rate models based on well-known Jelinski–Moranda and Moranda models, by considering with a change of testing environment. Especially in this paper, we incorporate the uncertainty of the effect of the change on the software reliability growth process into the software hazard rate modeling. Finally, we show numerical examples for our models and results of model comparisons by using actual data.