Robustness in Time Series: Robust Frequency Domain Analysis

Robustness in time series analysis is an important issue. A motivation for robust frequency domain analysis can be taken from medical application: Short-term heart rate variability recordings are usually analyzed in the frequency domain. The heart rate variability is assessed by estimating the spectral density function of the tachogram series. It is well known that classical spectral density estimates are prone to outlying observations, hence, robustness is an issue. The presented multi-step procedure based on robust filtering is insensitive to outliers, and therefore provides fully automated signal processing which will facilitate reliable and reproducible heart rate variability analysis with minimal operator input. Moreover, it can also be used to identify and mark outlying observations.

[1]  M. Otto,et al.  Outliers in Time Series , 1972 .

[2]  Kinga Howorka,et al.  Functional assessment of heart rate variability: physiological basis and practical applications. , 2002, International journal of cardiology.

[3]  A Schabmann,et al.  Effects of physical training on heart rate variability in diabetic patients with various degrees of cardiovascular autonomic neuropathy. , 1997, Cardiovascular research.

[4]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[5]  David J. Thomson,et al.  An overview of multiple-window and quadratic-inverse spectrum estimation methods , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[6]  A Schabmann,et al.  Optimal parameters of short-term heart rate spectrogram for routine evaluation of diabetic cardiovascular autonomic neuropathy. , 1998, Journal of the autonomic nervous system.

[7]  P. Rousseeuw,et al.  A fast algorithm for the minimum covariance determinant estimator , 1999 .

[8]  T. Teichmann,et al.  The Measurement of Power Spectra , 1960 .

[9]  Werner A. Stahel,et al.  New directions in statistical data analysis and robustness. Proceedings of the Workshop on Data Analysis and Robustness held in Ascona, 1992 , 1994 .

[10]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[11]  R. Martin Approximate conditional-mean type smoothers and interpolators , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[12]  Ronald K. Pearson,et al.  BMC Bioinformatics BioMed Central Methodology article , 2005 .

[13]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[14]  Alan G. Jones,et al.  Spectral analyses of the KTB sonic and density logs using robust nonparametric methods , 1997 .

[15]  C. Masreliez Approximate non-Gaussian filtering with linear state and observation relations , 1975 .

[16]  A. Walden,et al.  Spectral analysis for physical applications : multitaper and conventional univariate techniques , 1996 .

[17]  L. Denby,et al.  Robust Estimation of the First-Order Autoregressive Parameter , 1979 .

[18]  Oliver D. Anderson Directions in Time Series , 1981 .

[19]  G. Breithardt,et al.  Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. , 1996 .

[20]  A. Malliani,et al.  Heart rate variability. Standards of measurement, physiological interpretation, and clinical use , 1996 .

[21]  Marek Malik,et al.  Clinical Guide to Cardiac Autonomic Tests , 1998, Springer Netherlands.

[22]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[23]  C. C. Heyde,et al.  ON QUASI-LIKELIHOOD METHODS AND ESTIMATION FOR BUNCHING PROCESSES AND HETEROSCEDASTIC REGRESSION MODELS , 1992 .

[24]  M. Genton,et al.  Highly Robust Estimation of the Autocovariance Function , 2000 .

[25]  Juha Hartikainen,et al.  Short-Term Measurement of Heart Rate Variability , 1998 .

[26]  Alan D. Chave,et al.  On the robust estimation of power spectra, coherences, and transfer functions , 1987 .

[27]  R. Dutter,et al.  Analyzing short-term measurements of heart rate variability in the frequency domain using robustly estimated spectral density functions , 2012, Comput. Stat. Data Anal..

[28]  D. Thomson,et al.  Robust Estimation of Power Spectra , 1979 .

[29]  Theo Gasser,et al.  Smoothing Techniques for Curve Estimation , 1979 .

[30]  E. Parzen Mathematical Considerations in the Estimation of Spectra , 1961 .