Active optical fibres in modern particle physics experiments

In modern particle physics experiments wavelength-shifting and scintillating fibres based on plastic polymers are used for tracking and calorimetry. In this review the role of photon trapping efficiencies, transmission functions and signal response times for common multimode active fibres is discussed. Numerical simulations involving three dimensional tracking of skew rays through curved fibres demonstrate the characteristics of trapped light. Of practical interest are the parametrisations of transmission functions and the minimum permissible radius of curvature. These are of great importance in today's experiments where high count rates and small numbers of photoelectrons are encountered. Special emphasis has been placed on the timing resolution of fibre detectors and its limitation due to variations in the path length of generated photons.

[1]  T. Tohyama,et al.  TIME RESOLUTION OF A SCINTILLATING FIBER DETECTOR , 1999 .

[2]  D. Sillou,et al.  New type of position sensitive photomultiplier , 1981 .

[3]  B. K. Gazey,et al.  Bent slab ray theory for power distribution in core and cladding of bent multimode optical fibres , 1991 .

[4]  M. Moszynski,et al.  Timing properties of long scintillation counters based on scintillating fibers , 1991 .

[5]  M. Hare,et al.  Electromagnetic calorimeters for the BNL muon (g-2) experiment , 2000 .

[6]  A. Penzo,et al.  Scintillating fiber hodoscopes using position-sensitive photomultipliers , 1996 .

[7]  Eric Donath,et al.  Light-Collecting Properties of a Perfect Circular Optical Fiber* , 1963 .

[8]  R. J. Potter Transmission Properties of Optical Fibers , 1961 .

[9]  A. Penzo,et al.  Fast readout of scintillating fiber arrays using position-sensitive photomultipliers , 1995 .

[10]  Helmuth Spieler,et al.  Fast Timing Methods for Semiconductor Detectors , 1982, IEEE Transactions on Nuclear Science.

[11]  N. Pastrone,et al.  Development of a cylindrical scintillating fiber tracker for experiment E835 at FNAL , 1995 .

[12]  K. Hara,et al.  Radiation hardness and mechanical durability of Kuraray optical fibers , 1998 .

[13]  B. K. Gazey,et al.  Radiation from circular bends in multimode and single-mode optical fibres , 1989 .

[14]  D. Gloge,et al.  Bending loss in multimode fibers with graded and ungraded core index. , 1972, Applied optics.

[15]  Hidehiro Kume,et al.  Position Sensitive Photomultiplier Tubes for Scintillation Imaging , 1986, IEEE Transactions on Nuclear Science.

[16]  J. W. Epstein,et al.  Scintillating optical fiber trajectory detectors , 1989 .

[17]  N. S. Kapany,et al.  Fiber optics. Part I. Optical properties of certain dielectric cylinders , 1957 .

[18]  R. Mussa,et al.  Results from the E835 scintillating fiber detector , 1998 .

[19]  K. Wick,et al.  Unexpected behaviour of polystyrene-based scintillating fibers during irradiation at low doses and low dose rates , 2001 .

[20]  F. Sauli GEM: A new concept for electron amplification in gas detectors , 1997 .

[21]  E. Snitzer Cylindrical Dielectric Waveguide Modes , 1961 .

[22]  J. B. Birks,et al.  The Theory and Practice of Scintillation Counting , 1965 .

[23]  Dietrich Marcuse,et al.  Curvature loss formula for optical fibers , 1976 .

[24]  W. Gambling,et al.  Curvature and microbending losses in single-mode optical fibres , 1979 .

[25]  G. Charpak,et al.  MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments , 1996 .

[26]  K. Thyagarajan,et al.  Introduction to fiber optics: An Introduction to Fiber Optics , 1998 .

[27]  J. Takeuchi,et al.  THE LATEST VACUUM PHOTODETECTOR , 1997 .

[28]  A. Penzo,et al.  Read-out of scintillating fibres using a weak cross-talk position-sensitive photomultiplier , 1998 .

[29]  D. Macina,et al.  EUROPEAN LABORATORY FOR PARTICLE PHYSICS CERN-PPE/97-100 28.7.97 THE CHORUS SCINTILLATING FIBER TRACKER AND OPTO-ELECTRONIC READOUT SYSTEM , 1997 .

[30]  A. Suzuki,et al.  Design, construction, and operation of SciFi tracking detector for K2K experiment , 2000, hep-ex/0004024.

[31]  V. Eberhard,et al.  Spectral attenuation length of scintillating fibers , 1995 .

[32]  N. S. Kapany,et al.  Fiber Optics. X. Evanescent Boundary Wave Propagation , 1963 .

[33]  U. Werthenbach,et al.  An optical readout for a fiber tracker , 1998 .

[34]  R. Nahnhauer,et al.  Investigation of silicon Avalanche Photodiodes for use in scintillating fiber trackers , 2000 .

[35]  A. H. Grashorn The MINOS Detectors , 2005, hep-ex/0507018.

[36]  T.S.M. Maclean,et al.  Transition and pure bending losses in multimode and single-mode bent optical fibres , 1991 .

[37]  N. S. Kapany,et al.  Fiber Optics. VII. Image Transfer from Lambertian Emitters , 1961 .