Off-resonance rotating-frame amide proton spin relaxation experiments measuring microsecond chemical exchange in proteins

[1]  L. Kay,et al.  Off-resonance R(1rho) NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain. , 2005, Journal of the American Chemical Society.

[2]  Georgia Hadjipavlou,et al.  Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair , 2004, Nature Structural &Molecular Biology.

[3]  J. Bushweller,et al.  CBFβ allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium , 2004, Nature Structural &Molecular Biology.

[4]  C. Dobson,et al.  Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR , 2004, Nature.

[5]  A. Palmer,et al.  NMR characterization of the dynamics of biomacromolecules. , 2004, Chemical reviews.

[6]  A. Palmer,et al.  NMR R1 rho rotating-frame relaxation with weak radio frequency fields. , 2004, Journal of the American Chemical Society.

[7]  Patrik Lundström,et al.  Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant. , 2004, Journal of the American Chemical Society.

[8]  A. Palmer,et al.  Disulfide bond isomerization in basic pancreatic trypsin inhibitor: multisite chemical exchange quantified by CPMG relaxation dispersion and chemical shift modeling. , 2003, Journal of the American Chemical Society.

[9]  J. P. Loria,et al.  Off-resonance TROSY (R1 rho - R1) for quantitation of fast exchange processes in large proteins. , 2003, Journal of the American Chemical Society.

[10]  M. Akke,et al.  Carbonyl 13C transverse relaxation measurements to sample protein backbone dynamics , 2003 .

[11]  A. Palmer,et al.  An average-magnetization analysis of R 1ρ relaxation outside of the fast exchange limit , 2003 .

[12]  David A. Case,et al.  Probing multiple effects on 15N, 13Cα, 13Cβ, and 13C′ chemical shifts in peptides using density functional theory , 2002 .

[13]  Mikael Akke,et al.  NMR methods for characterizing microsecond to millisecond dynamics in recognition and catalysis. , 2002, Current opinion in structural biology.

[14]  C. Foote,et al.  Characterization of endoperoxide and hydroperoxide intermediates in the reaction of pyridoxine with singlet oxygen. , 2002, Journal of the American Chemical Society.

[15]  L. Kay,et al.  An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation rates. , 2002, Journal of the American Chemical Society.

[16]  D. Case,et al.  Use of chemical shifts in macromolecular structure determination. , 2002, Methods in enzymology.

[17]  D. A. Bosco,et al.  Enzyme Dynamics During Catalysis , 2002, Science.

[18]  L. Kay,et al.  Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. , 2002, Journal of the American Chemical Society.

[19]  C Wang,et al.  CPMG sequences with enhanced sensitivity to chemical exchange , 2001, Journal of biomolecular NMR.

[20]  Ad Bax,et al.  Solution structure of Ca2+–calmodulin reveals flexible hand-like properties of its domains , 2001, Nature Structural Biology.

[21]  M. Akke,et al.  Dynamics of the transition between open and closed conformations in a calmodulin C-terminal domain mutant. , 2001, Structure.

[22]  M. Akke,et al.  Structural dynamics in the C-terminal domain of calmodulin at low calcium levels. , 1999, Journal of molecular biology.

[23]  M. Akke,et al.  Backbone dynamics and energetics of a calmodulin domain mutant exchanging between closed and open conformations. , 1999, Journal of molecular biology.

[24]  Paul A. Keifer,et al.  90° pulse width calibrations: how to read a pulse width array , 1999 .

[25]  D. Torchia,et al.  Using Amide 1H and 15N Transverse Relaxation To Detect Millisecond Time-Scale Motions in Perdeuterated Proteins: Application to HIV-1 Protease , 1998 .

[26]  C. Kroenke,et al.  Longitudinal and Transverse 1H−15N Dipolar/15N Chemical Shift Anisotropy Relaxation Interference: Unambiguous Determination of Rotational Diffusion Tensors and Chemical Exchange Effects in Biological Macromolecules , 1998 .

[27]  A. Bax,et al.  Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. , 1998, Journal of magnetic resonance.

[28]  R. Kaptein,et al.  An Off-resonance Rotating Frame Relaxation Experiment for the Investigation of Macromolecular Dynamics Using Adiabatic Rotations , 1998, Journal of magnetic resonance.

[29]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Malmendal,et al.  NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state. , 1997, Biochemistry.

[31]  S. Opella,et al.  Measurement of 1H T1 rho in a uniformly 15N-labeled protein in solution with heteronuclear two-dimensional spectroscopy. , 1997, Journal of magnetic resonance.

[32]  Arthur G. Palmer,et al.  Monitoring Macromolecular Motions on Microsecond to Millisecond Time Scales by R1ρ−R1 Constant Relaxation Time NMR Spectroscopy , 1996 .

[33]  H. Desvaux,et al.  STUDY OF SLOW MOLECULAR MOTIONS IN SOLUTION USING OFF-RESONANCE IRRADIATION IN HOMONUCLEAR NMR. II: FAST CHEMICAL EXCHANGE PROCESSES , 1995 .

[34]  J. Cavanagh Protein NMR Spectroscopy: Principles and Practice , 1995 .

[35]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[36]  Frank J.M. van de Ven,et al.  Multidimensional NMR in Liquids: Basic Principles and Experimental Methods , 1995 .

[37]  Ad Bax,et al.  Solution structure of calcium-free calmodulin , 1995, Nature Structural Biology.

[38]  Mitsuhiko Ikura,et al.  Calcium-induced conformational transition revealed by the solution structure of apo calmodulin , 1995, Nature Structural Biology.

[39]  Eva Thulin,et al.  Calcium-induced structural changes and domain autonomy in calmodulin , 1995, Nature Structural Biology.

[40]  Hans J. Vogel,et al.  Calmodulin: a versatile calcium mediator protein , 1994 .

[41]  D. G. Davis,et al.  Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T1 rho and T2 (CPMG) methods. , 1994, Journal of magnetic resonance. Series B.

[42]  M. Goldman,et al.  Off-Resonance ROESY for the Study of Dynamic Processes , 1994 .

[43]  E. Oldfield,et al.  Correlation between 15N NMR chemical shifts in proteins and secondary structure , 1994, Journal of biomolecular NMR.

[44]  A. Bax,et al.  Minimizing the effects of radio-frequency heating in multidimensional NMR experiments , 1993, Journal of biomolecular NMR.

[45]  Vladimir Sklenar,et al.  Gradient-Tailored Water Suppression for 1H-15N HSQC Experiments Optimized to Retain Full Sensitivity , 1993 .

[46]  F A Quiocho,et al.  Calmodulin structure refined at 1.7 A resolution. , 1992, Journal of molecular biology.

[47]  L. Kay,et al.  Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins , 1992 .

[48]  P. Wright,et al.  Suppression of the effects of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanisms in the measurement of spin-spin relaxation rates , 1992 .

[49]  Michael Garwood,et al.  Symmetric pulses to induce arbitrary flip angles with compensation for rf inhomogeneity and resonance offsets , 1991 .

[50]  Ray Freeman,et al.  Band-selective radiofrequency pulses , 1991 .

[51]  Ad Bax,et al.  Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins , 1989 .

[52]  Alan R. Rath,et al.  Optimization of modulation functions to improve insensitivity of adiabatic pulses to variations in B1 magnitude , 1988 .

[53]  W. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[54]  A. J. Shaka,et al.  Evaluation of a new broadband decoupling sequence: WALTZ-16 , 1983 .

[55]  Jay L. Devore,et al.  Probability and statistics for engineering and the sciences , 1982 .

[56]  William H. Press,et al.  Numerical recipes in C , 2002 .

[57]  Oleg Trott,et al.  R1rho relaxation outside of the fast-exchange limit. , 2002, Journal of magnetic resonance.

[58]  C D Kroenke,et al.  Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. , 2001, Methods in enzymology.

[59]  M Ikura,et al.  Molecular and structural basis of target recognition by calmodulin. , 1995, Annual review of biophysics and biomolecular structure.