3D-CFD NUMERICAL MODELING OF IMPACTS FROM HORIZONTAL AXIS TIDAL TURBINES IN THE NEAR REGION

A Virtual Blade Model approach has been applied to simulate flows across a Horizontal Axis Tidal Turbine (HATT). The 3D-CFD Fluent 14.5 package was employed to solve the Reynolds Averaging Navier Stokes equations. A source term was added in the momentum equation as part of the solution developed through the Blade Element Momentum Theory for an incompressible flow in a open channel. The model was validated against experimental data of a 3 bladed 0.5m diameter turbine in a high speed re-circulating water flume in terms of velocity and Turbulent Kinetic Energy (TKE) profiles. The model results correlate well with the experimental data. The change of flow field and the variation of free surface can be clearly seen in the results.