Reconstruction of black hole metric perturbations from Weyl curvature: II. The Regge–Wheeler gauge
暂无分享,去创建一个
[1] S. Detweiler,et al. Low multipole contributions to the gravitational self-force , 2003, gr-qc/0312010.
[2] C. Lousto,et al. Coalescence remnant of spinning binary black holes , 2003, astro-ph/0305287.
[3] Takahiro Tanaka,et al. Improvement on the metric reconstruction scheme in the Regge-Wheeler-Zerilli formalism , 2002, gr-qc/0211060.
[4] H. Nakano,et al. Gauge problem in the gravitational self-force: Harmonic gauge approach in the Schwarzschild background , 2002, gr-qc/0208060.
[5] A. Ori. Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential in Kerr spacetime , 2002, gr-qc/0207045.
[6] C.O.Lousto,et al. Computing the gravitational self-force on a compact object plunging into a Schwarzschild black hole , 2002, gr-qc/0205043.
[7] C. Lousto,et al. Modeling gravitational radiation from coalescing binary black holes , 2002, astro-ph/0202469.
[8] C. Lousto,et al. The Lazarus project : A pragmatic approach to binary black hole , 2001, gr-qc/0104063.
[9] A. Ori,et al. Gravitational self-force and gauge transformations , 2001, gr-qc/0107056.
[10] C. Lousto,et al. Plunge waveforms from inspiralling binary black holes. , 2001, Physical review letters.
[11] Loustó. Pragmatic approach to gravitational radiation reaction in binary black holes , 1999, Physical review letters.
[12] John Baker,et al. Gravitational waves from black hole collisions via an eclectic approach , 2000 .
[13] M.Campanelli,et al. Second order gauge invariant gravitational perturbations of a Kerr black hole , 1998, gr-qc/9811019.
[14] R. Price,et al. Understanding initial data for black hole collisions , 1997, gr-qc/9705071.
[15] Subrahmanyan Chandrasekhar,et al. The Mathematical Theory of Black Holes , 1983 .
[16] R. Wald. Construction of metric and vector potential perturbations of a Reissner–Nordström black hole , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[17] J. Stewart. Hertz─Bromwich─Debye─Whittaker─Penrose potentials in general relativity , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[18] L. Kegeles,et al. Constructive procedure for perturbations of spacetimes , 1979 .
[19] R. Price,et al. RADIATION FROM COLLAPSING RELATIVISTIC STARS. II. LINEARIZED EVEN PARITY RADIATION , 1978 .
[20] R. Giacconi,et al. Physics and astrophysics of neutron stars and black holes = Fisica ed astrofisica delle stelle di neutroni e dei buchi neri , 1978 .
[21] P. Chrzanowski. Vector potential and metric perturbations of a rotating black hole , 1975 .
[22] V. Moncrief. Gravitational perturbations of spherically symmetric systems. II. Perfect fluid interiors , 1974 .
[23] Vincent Moncrief,et al. Gravitational perturbations of spherically symmetric systems. I. The exterior problem , 1974 .
[24] Saul A. Teukolsky,et al. Perturbations of a rotating black hole , 1974 .
[25] Saul A. Teukolsky,et al. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .
[26] R. Wald. On perturbations of a Kerr black hole , 1973 .
[27] F. Zerilli,et al. Effective potential for even parity Regge-Wheeler gravitational perturbation equations , 1970 .
[28] F. Zerilli. Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics , 1969 .
[29] Roger Penrose,et al. An Approach to Gravitational Radiation by a Method of Spin Coefficients , 1962 .
[30] John Archibald Wheeler,et al. Stability of a Schwarzschild singularity , 1957 .