Reconstruction of black hole metric perturbations from Weyl curvature: II. The Regge–Wheeler gauge

Perturbation theory of rotating black holes is described in terms of the Weyl scalars ψ4 and ψ0, each satisfying Teukolsky's complex master wave equation with spin s = ∓2, and respectively representing outgoing and ingoing radiation. We explicitly construct the metric perturbations out of these Weyl scalars in the Regge–Wheeler gauge in the non-rotating limit. We propose a generalization of the Regge–Wheeler gauge for a Kerr background in Newman–Penrose language and discuss the approach for building up the perturbed spacetime of a rotating black hole. We also provide two-way relationships between waveforms defined in the metric and curvature approaches in the time domain, also known as (inverse) Chandrasekhar transformations, generalized to include matter.

[1]  S. Detweiler,et al.  Low multipole contributions to the gravitational self-force , 2003, gr-qc/0312010.

[2]  C. Lousto,et al.  Coalescence remnant of spinning binary black holes , 2003, astro-ph/0305287.

[3]  Takahiro Tanaka,et al.  Improvement on the metric reconstruction scheme in the Regge-Wheeler-Zerilli formalism , 2002, gr-qc/0211060.

[4]  H. Nakano,et al.  Gauge problem in the gravitational self-force: Harmonic gauge approach in the Schwarzschild background , 2002, gr-qc/0208060.

[5]  A. Ori Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential in Kerr spacetime , 2002, gr-qc/0207045.

[6]  C.O.Lousto,et al.  Computing the gravitational self-force on a compact object plunging into a Schwarzschild black hole , 2002, gr-qc/0205043.

[7]  C. Lousto,et al.  Modeling gravitational radiation from coalescing binary black holes , 2002, astro-ph/0202469.

[8]  C. Lousto,et al.  The Lazarus project : A pragmatic approach to binary black hole , 2001, gr-qc/0104063.

[9]  A. Ori,et al.  Gravitational self-force and gauge transformations , 2001, gr-qc/0107056.

[10]  C. Lousto,et al.  Plunge waveforms from inspiralling binary black holes. , 2001, Physical review letters.

[11]  Loustó Pragmatic approach to gravitational radiation reaction in binary black holes , 1999, Physical review letters.

[12]  John Baker,et al.  Gravitational waves from black hole collisions via an eclectic approach , 2000 .

[13]  M.Campanelli,et al.  Second order gauge invariant gravitational perturbations of a Kerr black hole , 1998, gr-qc/9811019.

[14]  R. Price,et al.  Understanding initial data for black hole collisions , 1997, gr-qc/9705071.

[15]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[16]  R. Wald Construction of metric and vector potential perturbations of a Reissner–Nordström black hole , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  J. Stewart Hertz─Bromwich─Debye─Whittaker─Penrose potentials in general relativity , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  L. Kegeles,et al.  Constructive procedure for perturbations of spacetimes , 1979 .

[19]  R. Price,et al.  RADIATION FROM COLLAPSING RELATIVISTIC STARS. II. LINEARIZED EVEN PARITY RADIATION , 1978 .

[20]  R. Giacconi,et al.  Physics and astrophysics of neutron stars and black holes = Fisica ed astrofisica delle stelle di neutroni e dei buchi neri , 1978 .

[21]  P. Chrzanowski Vector potential and metric perturbations of a rotating black hole , 1975 .

[22]  V. Moncrief Gravitational perturbations of spherically symmetric systems. II. Perfect fluid interiors , 1974 .

[23]  Vincent Moncrief,et al.  Gravitational perturbations of spherically symmetric systems. I. The exterior problem , 1974 .

[24]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole , 1974 .

[25]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .

[26]  R. Wald On perturbations of a Kerr black hole , 1973 .

[27]  F. Zerilli,et al.  Effective potential for even parity Regge-Wheeler gravitational perturbation equations , 1970 .

[28]  F. Zerilli Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics , 1969 .

[29]  Roger Penrose,et al.  An Approach to Gravitational Radiation by a Method of Spin Coefficients , 1962 .

[30]  John Archibald Wheeler,et al.  Stability of a Schwarzschild singularity , 1957 .