Balancing Ligand Flexibility Versus Rigidity for the Step-Wise Self-Assembly of M12L24 Via M6L12 Metal-Organic Cages.

Non-covalent interactions are important for directing protein folding across multiple intermediates and can even provide access to multiple stable structures with different properties and functions. Herein, we describe an approach for mimicking this behavior in the self-assembly of metal-organic cages. Two ligands whose bend angles are controlled by non-covalent interactions and one ligand lacking the above-mentioned interactions were synthesized and used for self-assembly with Pd 2+ . As these weak interactions are easily broken, the bend angles have a controlled flexibility giving access to M 2 ( L1 ) 4 , M 6 ( L2 ) 12 , and M 12 ( L2 ) 24 cages. By controlling the self-assembly conditions this process can be directed in a stepwise fashion. Additionally, the multiple endohedral hydrogen bonding sites on the ligand were found to play a role in the binding and discrimination of neutral guests.

[1]  R. Gupta,et al.  Two Hg(II)-Based Macrocycles Offering Hydrogen Bonding Cavities: Influence of Cavity Structure on Heterogeneous Catalysis , 2019, Crystal Growth & Design.

[2]  A. Garden,et al.  Redox active [Pd2L4]4+ cages constructed from rotationally flexible 1,1'-disubstituted ferrocene ligands. , 2019, Chemical communications.

[3]  F. Rizzuto,et al.  Multisite Binding of Drugs and Natural Products in an Entropically Favorable, Heteroleptic Receptor. , 2019, Journal of the American Chemical Society.

[4]  Tianbo Liu,et al.  Tuning the Intercage Distance in Charge-Regulated Blackberry-Type Assemblies through Host-Guest Chemistry. , 2019, Chemistry.

[5]  K. Severin,et al.  Palladium-Based Metal-Ligand Assemblies: The Contrasting Behavior upon Addition of Pyridine or Acid. , 2019, Journal of the American Chemical Society.

[6]  F. Rizzuto,et al.  Hydrogen-Bond-Assisted Symmetry Breaking in a Network of Chiral Metal-Organic Assemblies. , 2019, Journal of the American Chemical Society.

[7]  Y. Okamoto,et al.  Two polyhedral frameworks of an M12L24 spherical complex revealed by replica-exchange molecular dynamics simulations , 2019, Chemical Physics Letters.

[8]  Quan Gan,et al.  Helicity adaptation within a quadruply stranded helicate by encapsulation. , 2018, Chemical communications.

[9]  G. Clever,et al.  Structure relationships between bis-monodentate ligands and coordination driven self-assemblies , 2018, Coordination Chemistry Reviews.

[10]  K. Raymond,et al.  Self-Assembled Tetrahedral Hosts as Supramolecular Catalysts. , 2018, Accounts of chemical research.

[11]  J. Crowley,et al.  Strategies for Reversible Guest Uptake and Release from Metallosupramolecular Architectures. , 2018, Chemistry.

[12]  P. Stang,et al.  Hierarchical Assemblies of Supramolecular Coordination Complexes. , 2018, Accounts of chemical research.

[13]  C. Hunter,et al.  Coordination Cages Based on Bis(pyrazolylpyridine) Ligands: Structures, Dynamic Behavior, Guest Binding, and Catalysis. , 2018, Accounts of chemical research.

[14]  Guido H. Clever,et al.  Hierarchischer Aufbau eines verflochtenen M8L16‐Containers , 2018 .

[15]  I. Huc,et al.  Designing Helical Molecular Capsules Based on Folded Aromatic Amide Oligomers. , 2018, Accounts of chemical research.

[16]  G. Clever,et al.  Hierarchical Assembly of an Interlocked M8L16 Container , 2018, Angewandte Chemie.

[17]  Kohei Takahashi,et al.  Dynamic Interconversion between Boroxine Cages Based on Pyridine Ligation. , 2018, Angewandte Chemie.

[18]  Jun Yan,et al.  Highly Stable Spherical Metallo-Capsule from a Branched Hexapodal Terpyridine and Its Self-Assembled Berry-type Nanostructure. , 2018, Journal of the American Chemical Society.

[19]  S. Hiraoka,et al.  Quantitative Analysis of the Self-Assembly Process of a Pd12 L24 Coordination Sphere. , 2017, Chemistry, an Asian journal.

[20]  A. Casini,et al.  The Promise of Self-Assembled 3D Supramolecular Coordination Complexes for Biomedical Applications. , 2017, Inorganic chemistry.

[21]  Jiancheng Luo,et al.  Strong Co-Ion Effect via Cation-π Interaction on the Self-Assembly of Metal-Organic Cationic Macrocycles. , 2017, Journal of the American Chemical Society.

[22]  G. Clever,et al.  Cation-Anion Arrangement Patterns in Self-Assembled Pd2L4 and Pd4L8 Coordination Cages. , 2017, Accounts of chemical research.

[23]  Qingfu Sun,et al.  Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles , 2017, Nature Communications.

[24]  C. Hunter,et al.  H-Bond Self-Assembly: Folding versus Duplex Formation , 2017, Journal of the American Chemical Society.

[25]  Feihe Huang,et al.  Multicomponent Platinum(II) Cages with Tunable Emission and Amino Acid Sensing. , 2017, Journal of the American Chemical Society.

[26]  Takashi Kumasaka,et al.  Self-assembly of tetravalent Goldberg polyhedra from 144 small components , 2016, Nature.

[27]  Jiancheng Luo,et al.  Modification of the Solution Behavior of Pd12 L24 Metal-Organic Nanocages via PEGylation. , 2016, Chemistry.

[28]  P. J. Lusby,et al.  Maximizing Coordination Capsule-Guest Polar Interactions in Apolar Solvents Reveals Significant Binding. , 2016, Angewandte Chemie.

[29]  Katsuhiro Maeda,et al.  Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. , 2016, Chemical reviews.

[30]  Q. Luo,et al.  Protein Assembly: Versatile Approaches to Construct Highly Ordered Nanostructures. , 2016, Chemical reviews.

[31]  A. Cooper,et al.  Porous organic cages: soluble, modular and molecular pores , 2016 .

[32]  Yoshihiro Ueda,et al.  Self-Assembly of M30L60 Icosidodecahedron , 2016 .

[33]  Tanya K. Ronson,et al.  Perfluorinated Ligands Induce Meridional Metal Stereochemistry to Generate M8L12, M10L15, and M12L18 Prisms. , 2016, Journal of the American Chemical Society.

[34]  Wei Wang,et al.  Supramolecular transformations within discrete coordination-driven supramolecular architectures. , 2016, Chemical Society reviews.

[35]  M. Jennings,et al.  Chemistry of palladium(II) with bis(3-amidopyridine) ligands , 2016 .

[36]  Tanya K. Ronson,et al.  Subcomponent Flexibility Enables Conversion between D4-Symmetric Cd(II)8L8 and T-Symmetric Cd(II)4L4 Assemblies. , 2016, Journal of the American Chemical Society.

[37]  J. Reek,et al.  Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions , 2016, Nature Chemistry.

[38]  Guido H. Clever,et al.  Lichtgesteuerte Umwandlung zwischen einem selbstassemblierten Dreieck und einer rhombenkuboktaedrischen Sphäre , 2016 .

[39]  M. Seibt,et al.  Light-Controlled Interconversion between a Self-Assembled Triangle and a Rhombicuboctahedral Sphere. , 2016, Angewandte Chemie.

[40]  M. Fujita,et al.  Finely Resolved Threshold for the Sharp M12L24/M24L48 Structural Switch in Multi-Component M(n)L(2n) Polyhedral Assemblies: X-ray, MS, NMR, and Ultracentrifugation Analyses. , 2015, Chemistry, an Asian journal.

[41]  K. Raymond,et al.  Supramolecular catalysis in metal-ligand cluster hosts. , 2015, Chemical reviews.

[42]  J. Nitschke,et al.  Stimuli-Responsive Metal-Ligand Assemblies. , 2015, Chemical reviews.

[43]  Timothy R Cook,et al.  Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. , 2015, Chemical reviews.

[44]  M. Fujita,et al.  Geometrically restricted intermediates in the self-assembly of an M12L24 cuboctahedral complex. , 2015, Angewandte Chemie.

[45]  A. Casini,et al.  Self-assembled M2L4 coordination cages: Synthesis and potential applications , 2014 .

[46]  W. Ramsay,et al.  Stereochemistry in subcomponent self-assembly. , 2014, Accounts of chemical research.

[47]  Tomohiko Yamaguchi,et al.  Coordination-directed self-assembly of M12L24 nanocage: effects of kinetic trapping on the assembly process. , 2014, ACS nano.

[48]  M. Fujita,et al.  Giant hollow M(n)L(2n) spherical complexes: structure, functionalisation and applications. , 2013, Chemical communications.

[49]  D. Chand,et al.  Self-assembled mononuclear palladium(II) based molecular loops , 2013 .

[50]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[51]  Amlan K. Pal,et al.  Palladium(II) driven self-assembly of a saturated quadruple-stranded metallo helicate. , 2012, Dalton transactions.

[52]  Jun-Li Hou,et al.  Aromatic amide foldamers: structures, properties, and functions. , 2012, Chemical reviews.

[53]  M. Fujita,et al.  Cage-catalyzed Knoevenagel condensation under neutral conditions in water. , 2012, Journal of the American Chemical Society.

[54]  M. Fujita,et al.  Self-assembly of Pt(II) spherical complexes via temporary labilization of the metal-ligand association in 2,2,2-trifluoroethanol. , 2011, Journal of the American Chemical Society.

[55]  Pengyan Wu,et al.  An amide-containing metal-organic tetrahedron responding to a spin-trapping reaction in a fluorescent enhancement manner for biological imaging of NO in living cells. , 2011, Journal of the American Chemical Society.

[56]  Tianbo Liu,et al.  Viral-capsid-type vesicle-like structures assembled from M12L24 metal-organic hybrid nanocages. , 2011, Angewandte Chemie.

[57]  F. Tham,et al.  Two-component control of guest binding in a self-assembled cage molecule. , 2010, Chemical communications.

[58]  M. Fujita,et al.  Self-Assembled M24L48 Polyhedra and Their Sharp Structural Switch upon Subtle Ligand Variation , 2010, Science.

[59]  Yangzhong Liu,et al.  Heterobimetallic metal-complex assemblies constructed from the flexible arm-like ligand 1,1'-bis[(3-pyridylamino)carbonyl]ferrocene: structural versatility in the solid state. , 2010, Inorganic chemistry.

[60]  M. Jennings,et al.  Dynamic ring-opening polymerization of silver(I) complexes with bis(amidopyridine) ligands. , 2010, Dalton transactions.

[61]  K. Rissanen,et al.  White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule , 2009, Science.

[62]  M. Fujita,et al.  Remarkable stabilization of M(12)L(24) spherical frameworks through the cooperation of 48 Pd(II)-pyridine interactions. , 2009, Journal of the American Chemical Society.

[63]  M. Fujita,et al.  Self-assembly of an M6L12 coordination cube. , 2009, Chemical communications.

[64]  Tianbo Liu,et al.  Spontaneous self-assembly of metal-organic cationic nanocages to form monodisperse hollow vesicles in dilute solutions. , 2008, Journal of the American Chemical Society.

[65]  Kentaroh Watanabe,et al.  Porphine dimeric assemblies in organic-pillared coordination cages. , 2007, Angewandte Chemie.

[66]  J. Nitschke Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly. , 2007, Accounts of chemical research.

[67]  M. Fujita,et al.  Photoswitchable molecular lock. one-way catenation of a Pt(II)-linked coordination ring via the photolabilization of a Pt(II)-pyridine bond. , 2007, Journal of the American Chemical Society.

[68]  Jide Xu,et al.  Structurally characterized quadruple-stranded bisbidentate helicates. , 2006, Angewandte Chemie.

[69]  K. Biradha,et al.  Dynamic self-assembly of an M3L6 molecular triangle and an M4L8 tetrahedron from naked Pd(II) ions and bis(3-pyridyl)-substituted arenes. , 2006, Chemistry, an Asian journal.

[70]  M. Fujita,et al.  Finite, spherical coordination networks that self-organize from 36 small components. , 2004, Angewandte Chemie.

[71]  F. Würthner,et al.  Metallosupramolecular squares: from structure to function. , 2004, Chemical Society reviews.

[72]  S. R. Seidel,et al.  High-symmetry coordination cages via self-assembly. , 2002, Accounts of chemical research.

[73]  M. Jennings,et al.  Crosslinking a palladium(II) polymer gives a laminated sheet structure. , 2002, Chemical communications.

[74]  Matthew J. Mio,et al.  A field guide to foldamers. , 2001, Chemical reviews.

[75]  M. Fujita,et al.  Encapsulation of Large, Neutral Molecules in a Self-Assembled Nanocage Incorporating Six Palladium(II) Ions. , 1998, Angewandte Chemie.

[76]  Makoto Fujita,et al.  Einlagerung von großen, neutralen Molekülen in einem durch Selbstorganisation gebildeten Nanokäfig, der sechs PdII-Ionen enthält , 1998 .

[77]  M. Fujita,et al.  A Molecular Lock , 1995 .