Resistance to carbosulfan in Anopheles gambiae from Ivory Coast, based on reduced sensitivity of acetylcholinesterase

Resistance to carbosulfan, a carbamate insecticide, was detected in field populations of the malaria vector mosquito Anopheles gambiae Giles (Diptera: Culicidae) from two ecologically contrasted localities near Bouaké, Ivory Coast: rural M'bé with predominantly M form of An. gambiae susceptible to pyrethroids; suburban Yaokoffikro with predominantly S form of An. gambiae highly resistant to pyrethroids (96% kdr). The discriminating concentration of 0.4% carbosulfan (i.e. double the LC100) was determined from bioassays with the susceptible An. gambiae Kisumu strain. Following exposure to the diagnostic dosage (0.4% carbosulfan for 1 h), mortality rates of female An. gambiae adults (reared from larvae collected from ricefields) were 62% and 29% of those from M'bé and Yaokoffikro, respectively, 24 h post‐exposure. Exposure for 3 min to netting impregnated with the operational dosage of carbosulfan 200 mg/m2 gave mortality rates of 88% of those from M'bé and only 12.2% for Yaokoffikro. In each case the control untreated mortality rate was insignificant. Biochemical assays to detect possible resistance mechanism(s) revealed the presence of insensitive AChE in populations of An. gambiae at both localities, more prevalent in the S form at Yaokoffikro than in M form at M'bé, as expected from bioassays results. Our study demonstrates the need to monitor carbamate resistance among populations of the An. gambiae complex in Africa, to determine its spread and anticipate vector control failure if these insecticides are employed.

[1]  M. Taylor,et al.  Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae). , 2001, Bulletin of entomological research.

[2]  P. Carnevale,et al.  Combined pyrethroid and carbamate ‘two‐in‐one’ treated mosquito nets: field efficacy against pyrethroid‐resistant Anopheles gambiae and Culex quinquefasciatus , 2001, Medical and veterinary entomology.

[3]  A. Torre,et al.  Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa , 2001, Insect molecular biology.

[4]  J. Hemingway,et al.  Identification of a point mutation in the voltage‐gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids , 2000, Insect molecular biology.

[5]  R. Hunt,et al.  Anopheles funestus resistant to pyrethroid insecticides in South Africa , 2000, Medical and veterinary entomology.

[6]  C. Curtis,et al.  Experimental and molecular genetic analysis of the impact of pyrethroid and non-pyrethroid insecticide impregnated bednets for mosquito control in an area of pyrethroid resistance , 2000, Bulletin of Entomological Research.

[7]  P. Carnevale,et al.  Modifications of pyrethroid effects associated with kdr mutation in Anopheles gambiae , 2000, Medical and veterinary entomology.

[8]  C. Curtis,et al.  The kdr pyrethroid resistance gene in Anopheles gambiae: tests of non-pyrethroid insecticides and a new detection method for the gene. , 1999, Parassitologia.

[9]  P. Carnevale,et al.  Pyrethroid cross resistance spectrum among populations of Anopheles gambiae s.s. from Côte d'Ivoire. , 1999, Journal of the American Mosquito Control Association.

[10]  J. Doannio,et al.  Evaluation au laboratoire de l'efficacité insecticide de l'alpha-cyperméthrine sur les populations d'Anopheles gambiae de Côte d'Ivoire résistantes à la perméthrine et à la deltaméthrine , 1999 .

[11]  J. Miller,et al.  Can anything be done to maintain the effectiveness of pyrethroid-impregnated bednets against malaria vectors? , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  J. Hemingway,et al.  Resistance management strategies in malaria vector mosquito control. Baseline data for a large‐scale field trial against Anopheles albimanus in Mexico , 1998, Medical and veterinary entomology.

[13]  A. Devonshire,et al.  Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. , 1998, Insect molecular biology.

[14]  Magdalena Rodríguez,et al.  Cross‐resistance to malathion in Cuban Culex quinquefasciatus induced by larval selection with deltamethrin , 1998, Medical and veterinary entomology.

[15]  M. Raymond,et al.  Cross-resistance to pyrethroid and organophosphorus insecticides in the southern house mosquito (Diptera:Culicidae) from Cuba. , 1997, Journal of medical entomology.

[16]  J. Mouchet,et al.  Sensibilité d’ Anophèles gambiae aux insecticides en Côte-d’Ivoire , 1994 .

[17]  N. Élissa,et al.  Resistance of Anopheles gambiae s.s. to pyrethroids in Côte d'Ivoire. , 1993, Annales de la Societe belge de medecine tropicale.

[18]  S. Lindsay,et al.  Experimental hut trials of bednets impregnated with synthetic pyrethroid or organophosphate insecticide for mosquito control in The Gambia , 1991, Medical and veterinary entomology.

[19]  W. Brogdon,et al.  Fenitrothion-deltamethrin cross-resistance conferred by esterases in Guatemalan , 1990 .

[20]  J. Mouchet Agriculture and Vector Resistance , 1988 .

[21]  J. Hemingway,et al.  The biochemistry of insecticide resistance in Anopheles sacharovi: Comparative studies with a range of insecticide susceptible and resistant Anopheles and Culex species , 1985 .

[22]  J. Hemingway Genetics of organophosphate and carbamate resistance in Anopheles atroparvus (Diptera: Culicidae). , 1982, Journal of economic entomology.

[23]  A. Devonshire,et al.  A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae) , 1982 .

[24]  R. Kouznetsov Malaria Control by Application of Indoor Spraying of Residual Insecticides in Tropical Africa and Its Impact on Community Health , 1977, Tropical doctor.

[25]  P. Georghiou,et al.  Resistance to organophosphates and carbamates in Anopheles albimanus Based on reduced sensitivity of acetylcholinesterase. , 1975, Journal of economic entomology.

[26]  K. Courtney,et al.  A new and rapid colorimetric determination of acetylcholinesterase activity. , 1961, Biochemical pharmacology.

[27]  F. Darriet,et al.  Impact de la résistance aux pyréthrinoïdes sur l'efficacité des moustiquaires imprégnées dans la prévention du paludisme : résultats des essais en cases expérimentales avec la deltaméthrine SC. , 2000 .

[28]  O. Faye,et al.  Status of pyrethroid resistance in Anopheles gambiae sensu lato. , 1999, Bulletin of the World Health Organization.

[29]  G. Georghiou The Effect of Agrochemicals on Vector Populations , 1990 .

[30]  J. Hemingway,et al.  Pesticide resistance mechanisms produced by field selection pressures on Anopheles nigerrimus and A. culicifacies in Sri Lanka. , 1986, Bulletin of the World Health Organization.

[31]  L. Molineaux,et al.  The Garki project: Research on the epidemiology and control of malaria in the Sudan savanna of West Africa , 1980 .

[32]  G. Joshi,et al.  Evaluation of fenitrothion for the control of malaria. , 1978, Bulletin of the World Health Organization.

[33]  J. Nájera,et al.  A large-scale field trial of malathion as an insecticide for antimalarial work in Southern Uganda. , 1967, Bulletin of the World Health Organization.