Reduction of dynamic stall using a back-flow flap

A back-flow flap attached to the suction side of an airfoil is investigated in both passively and actively actuated modes for the control of dynamic stall. This method of dynamic stall control has low power requirements and no parasitic drag when not actuated. Experiments in a low-speed wind tunnel at 50 m/s were used to characterize the reduction in dynamic stall hysteresis using pressure measurements on the midline airfoil section. It was found that the pitching moment peak is reduced by an average of 25% for all deep stall test cases for active actuation of the flap, while for passive actuation the pitching moment peak is reduced by 19%. In each case the maximum lift remained the same, while the peak drag increased by an average of 2.5% for the active flap, and by 0.9% for the passive flap. With the flap closed at low angles of attack, the reference values of the airfoil are retained.

[1]  Redstone Arsenal,et al.  Passive Control of Compressible Dynamic Stall , 2008 .

[2]  Niels N. Sørensen,et al.  Validation of a Wind Tunnel Testing Facility for Blade Surface Pressure Measurements , 1998 .

[3]  L. Carr Progress in analysis and prediction of dynamic stall , 1988 .

[4]  Peter Freymuth,et al.  Toward dynamic separation without dynamic stall , 1988 .

[5]  John L. McCloud,et al.  Full-Scale Wind-Tunnel Tests of Blowing Boundary-Layer Control Applied to a Helicopter Rotor , 1960 .

[6]  A. Le Pape,et al.  Investigation of Dynamic Stall Control by Deployable Vortex Generator using Time-Resolved PIV Analysis and URANS Computations , 2011 .

[7]  W. Hage,et al.  Biological surfaces and their technological application - laboratory and flight experiments on drag reduction and separation control. Invited Lecture , 1997 .

[8]  Ranjith Mohan,et al.  A Unified Assessment of Fast Floquet, Generalized Floquet, and Periodic Eigenvector Methods for Rotorcraft Stability Predictions , 2013 .

[9]  M. S. Chandrasekhara,et al.  Competing Mechanisms of Compressible Dynamic Stall , 1998 .

[10]  Kai Richter,et al.  Experimental investigation of high-pressure pulsed blowing for dynamic stall control , 2014 .

[11]  Giuseppe Gibertini,et al.  Experimental investigation of the dynamic stall phenomenon on a NACA 23012 oscillating airfoil , 2013 .

[12]  M. S. Chandrasekhara,et al.  Dynamic Stall Measurements and Computations for a VR-12 Airfoil with a Variable Droop Leading Edge , 2013 .

[13]  Kai Richter,et al.  Dynamic stall control by leading edge vortex generators , 2006 .

[14]  J. Leishman Dynamic stall experiments on the NACA 23012 aerofoil , 1990 .

[15]  John A. Ekaterinaris,et al.  Prediction of active flow control performance on airfoils and wings , 2004 .

[16]  Jin Tso,et al.  Control of VR-7 Dynamic Stall by Strong Steady Blowing , 2004 .

[17]  T. Corke,et al.  Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil , 2006 .

[18]  John A. Ekaterinaris,et al.  Numerical Investigations of Dynamic Stall Active Control for Incompressible and Compressible Flows , 2000 .

[19]  L. Carr,et al.  Compressibility effects on dynamic stall , 1996 .

[20]  Rajat Mittal,et al.  Initial Characterization of Self-Activated Movable Flaps, "Pop-Up Feathers" , 2008 .

[21]  M. S. Chandrasekhara,et al.  Unsteady Stall Control Using Dynamically Deforming Airfoils , 1998 .

[22]  R. M. Rennie,et al.  Experimental measurements of dynamic control surface effectiveness , 1996 .

[23]  A. Le Pape,et al.  Vortical Interactions Behind Deployable Vortex Generator for Airfoil Static Stall Control , 2013 .

[24]  Kai Richter,et al.  Numerical Investigations of a Back-Flow Flap for Dynamic Stall Control , 2014 .

[25]  José Meseguer Ruiz,et al.  A Low Cost, Low Speed Wind Tunnel For Dynamic Stall Measurement , 2010 .

[26]  Steffen Opitz,et al.  An active back-flow flap for a helicopter rotor blade , 2014 .

[27]  W. J. Mccroskey,et al.  Viscous-Inviscid Interaction on Oscillating Airfoils in Subsonic Flow , 1981 .

[28]  S. A. Prince,et al.  Aerodynamic Stall Suppression on Airfoil Sections Using Passive Air-Jet Vortex Generators , 2009 .

[29]  Israel J Wygnanski,et al.  Dynamic stall control by periodic excitation, Part 1: NACA 0015 parametric study , 2001 .

[30]  Israel J Wygnanski,et al.  Effect of Leading-Edge Curvature on Airfoil Separation Control , 2003 .

[31]  Kai Richter,et al.  Improved Two-Dimensional Dynamic Stall Prediction with Structured and Hybrid Numerical Methods , 2011 .

[32]  Anthony Donald Gardner,et al.  Influence of rotation on dynamic stall , 2013 .

[33]  Kai Richter,et al.  Numerical investigation of air jets for dynamic stall control on the OA209 airfoil , 2011 .

[34]  C. Brücker,et al.  Separation control via self-adaptive hairy flaplet arrays , 2013 .

[35]  Max F. Platzer,et al.  Computational prediction of airfoil dynamic stall , 1998 .

[36]  David M. Schatzman,et al.  A study of unsteady turbulent boundary layer separation under conditions relevant to helicopter rotor dynamics , 2011 .

[37]  François Richez,et al.  Dynamic Stall Control Using Deployable Leading-Edge Vortex Generators , 2011 .

[38]  Kai Richter,et al.  Experimental Investigation of Air Jets for the Control of Compressible Dynamic Stall , 2013 .

[39]  M. Raffel,et al.  Investigation of the unsteady flow velocity field above an airfoil pitching under deep dynamic stall conditions , 1995 .

[40]  Israel J Wygnanski,et al.  Dynamic Stall Control by Periodic Excitation, Part 2: Mechanisms , 2001 .

[41]  Brian E. Wake,et al.  Combustion-Powered Actuation for Dynamic-Stall Suppression: High-Mach Simulations and Low-Mach Experiments , 2015 .

[42]  Ken Badcock,et al.  Investigation of Three-Dimensional Dynamic Stall Using Computational Fluid Dynamics , 2005 .

[43]  Frank Thiele,et al.  Separation Control by Self-Activated Movable Flaps , 2007 .

[44]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[45]  Markus Raffel,et al.  Dynamic Stall Control by Passive Disturbance Generators , 2013 .

[46]  Steffen Opitz,et al.  Aerodynamic and structural investigation of an active back-flow flap for dynamic stall control , 2014 .

[47]  Tim Lee,et al.  Dynamic Stall Flow Control via a Trailing-Edge Flap , 2006 .

[48]  George N. Barakos,et al.  Effect of active Gurney flaps on overall helicopter flight envelope , 2016, The Aeronautical Journal.

[49]  Patrick Ormande Bowles,et al.  Wind Tunnel Experiments on the Effect of Compressibility on the Attributes of Dynamic Stall , 2012 .

[50]  Mark D. Maughmer,et al.  Experimental Investigation of Self-Actuating, Upper-Surface, High-Lift-Enhancing Effectors , 2002 .

[51]  George A. Lesieutre,et al.  Miniature trailing-edge effectors for rotorcraft performance enhancement , 2007 .