All-Electrical Control of a Hybrid Electron Spin/Valley Quantum Bit in SOI CMOS Technology

We fabricated quantum dot devices using a standard SOI CMOS process flow and demonstrated that the spin of confined electrons could be controlled via a local electrical-field excitation, owing to intervalley spin–orbit coupling. We discuss that modulating the confinement geometry via an additional electrode may enable switching a quantum bit (qubit) between an electrically addressable valley configuration and a protected spin configuration. This proposed scheme bears relevance to improve the tradeoff between fast operations and slow decoherence for quantum computing on a Si qubit platform. Finally, we evoke the impact of process-induced variability on the operating bias range.

[1]  R Maurand,et al.  A CMOS silicon spin qubit , 2016, Nature Communications.

[2]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[3]  Maud Vinet,et al.  Few-electron edge-state quantum dots in a silicon nanowire field-effect transistor. , 2014, Nano letters.

[4]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[5]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[6]  Yann-Michel Niquet,et al.  All-electrical manipulation of silicon spin qubits with tunable spin-valley mixing , 2018, 1802.04693.

[7]  Gerhard Klimeck,et al.  Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting , 2013, Nature Communications.

[8]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.

[9]  Rodney Van Meter,et al.  A blueprint for building a quantum computer , 2013, Commun. ACM.

[10]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[11]  Menno Veldhorst,et al.  Electrically driven spin qubit based on valley mixing. , 2016, Physical review. B.

[12]  Maud Vinet,et al.  Electrically driven electron spin resonance mediated by spin–valley–orbit coupling in a silicon quantum dot , 2017, 1708.02903.

[13]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[14]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[15]  M. Vinet,et al.  SOI technology for quantum information processing , 2019, 2016 IEEE International Electron Devices Meeting (IEDM).

[16]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[17]  All-Electrical Control of a Hybrid Electron Spin/Valley Quantum Bit in SOI CMOS Technology , 2018, 2018 IEEE Symposium on VLSI Technology.

[18]  Joel R. Wendt,et al.  All-electrical universal control of a double quantum dot qubit in silicon MOS , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[19]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[20]  M. Vinet,et al.  Si CMOS platform for quantum information processing , 2016, 2016 IEEE Symposium on VLSI Technology.

[21]  J. Levy Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. , 2001, Physical review letters.

[22]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[23]  Maud Vinet,et al.  Electrical Spin Driving by g-Matrix Modulation in Spin-Orbit Qubits. , 2017, Physical review letters.

[24]  C. Tavernier,et al.  Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys , 2009, 0902.0491.

[25]  Charles Tahan,et al.  Electron spin resonance and spin–valley physics in a silicon double quantum dot , 2013, Nature Communications.

[26]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[27]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[28]  Takashi Nakajima,et al.  A fault-tolerant addressable spin qubit in a natural silicon quantum dot , 2016, Science Advances.

[29]  Xiang Fu,et al.  The engineering challenges in quantum computing , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.