Speedy Colorful Subtrees

Fragmentation trees are a technique for identifying molecular formulas and deriving some chemical properties of metabolites—small organic molecules—solely from mass spectral data. Computing these trees involves finding exact solutions to the NP-hard Maximum Colorful Subtree problem. Existing solvers struggle to solve the large instances involved fast enough to keep up with instrument throughput, and their performance remains a hindrance to adoption in practice.

[1]  Oliver Fiehn,et al.  Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm , 2006, BMC Bioinformatics.

[2]  Sebastian Böcker,et al.  Molecular Formula Identification Using Isotope Pattern Analysis and Calculation of Fragmentation Trees. , 2014, Mass spectrometry.

[3]  Markus Meringer,et al.  MS/MS Data Improves Automated Determination of Molecular Formulas by Mass Spectrometry , 2011 .

[4]  Florian Rasche,et al.  Finding Maximum Colorful Subtrees in Practice , 2012, RECOMB.

[5]  Tomáš Pluskal,et al.  Highly accurate chemical formula prediction tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules, and isotope pattern matching. , 2012, Analytical chemistry.

[6]  Steven Lai,et al.  MolFind: a software package enabling HPLC/MS-based identification of unknown chemical structures. , 2012, Analytical chemistry.

[7]  Zsuzsanna Lipták,et al.  A Fast and Simple Algorithm for the Money Changing Problem , 2007, Algorithmica.

[8]  Zsuzsanna Lipták,et al.  SIRIUS: decomposing isotope patterns for metabolite identification , 2008, Bioinform..

[9]  Jordan L. Boyd-Graber,et al.  Dirichlet Mixtures, the Dirichlet Process, and the Structure of Protein Space , 2013, J. Comput. Biol..

[10]  Thomas Zichner,et al.  Identifying the unknowns by aligning fragmentation trees. , 2012, Analytical chemistry.

[11]  Takaaki Nishioka,et al.  Winners of CASMI2013: Automated Tools and Challenge Data. , 2014, Mass spectrometry.

[12]  Ralf Tautenhahn,et al.  An accelerated workflow for untargeted metabolomics using the METLIN database , 2012, Nature Biotechnology.

[13]  Juho Rousu,et al.  Metabolite identification through multiple kernel learning on fragmentation trees , 2014, Bioinform..

[14]  Sebastian Böcker,et al.  Fragmentation Trees Reloaded , 2015, RECOMB 2015.

[15]  David S. Wishart,et al.  HMDB: a knowledgebase for the human metabolome , 2008, Nucleic Acids Res..

[16]  Andrew V. Goldberg,et al.  On Implementing the Push—Relabel Method for the Maximum Flow Problem , 1997, Algorithmica.

[17]  Egon L. Willighagen,et al.  Elemental composition determination based on MSn , 2011, Bioinform..

[18]  Florian Rasche,et al.  Computing fragmentation trees from tandem mass spectrometry data. , 2011, Analytical chemistry.

[19]  Florian Rasche,et al.  Towards de novo identification of metabolites by analyzing tandem mass spectra , 2008, ECCB.