Thermo-physical behavior of borosilicate glasses in the presence of high-level radioactive liquid waste constituents
暂无分享,去创建一个
[1] S. Rajasekaran,et al. Simulated studies on optimization and characterization of feed and product of melter for safe disposal of high-level radioactive liquid waste , 2020 .
[2] S. Rajasekaran,et al. Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass , 2019, Nuclear Engineering and Technology.
[3] S. Gin,et al. Radionuclides containment in nuclear glasses: an overview , 2017 .
[4] Juan Carlo Villalba,et al. Decomposição térmica (TG-DTA) de sais de ferro [FeCl3.6H2O] e [Fe(NO3)3.9H2O] com análise morfológica e química do produto final , 2014 .
[5] R. Short. Phase Separation and Crystallisation in UK HLW Vitrified Products , 2014 .
[6] N. Daskalova,et al. Possibilities of High Resolution Inductively Coupled Plasma Optical Emission Spectrometry in the Determination of Trace Elements in Environmental Materials , 2013 .
[7] L. C. Oliveira,et al. Thermal decomposition mechanism of iron(III) nitrate and characterization of intermediate products by the technique of computerized modeling , 2013, Journal of Thermal Analysis and Calorimetry.
[8] D. Caurant,et al. Lanthanum and Neodymium Solubility in Simplified SiO2–B2O3–Na2O–Al2O3–CaO High Level Waste Glass , 2012 .
[9] R. Viswanathan,et al. Study of vaporization of sodium metaborate by transpiration thermogravimetry and Knudsen effusion mass spectrometry. , 2011, The journal of physical chemistry. B.
[10] C. P. Kaushik,et al. Barium borosilicate glass – a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste , 2006 .
[11] William E. Lee,et al. An Introduction to Nuclear Waste Immobilisation , 2005 .
[12] J. Nóbrega,et al. Analytical performance of an inductively coupled plasma optical emission spectrometry with dual view configuration , 2003 .
[13] S. Stolyar,et al. Vaporization and Thermodynamic Properties of Melts in the Na2O–B2O3–SiO2 System , 2002 .
[14] N. B. Singh. Preparation of metal oxides and chemistry of oxides ions in nitrate eutectic melt , 2002 .
[15] K. Wieczorek-Ciurowa,et al. The Thermal Decomposition of Fe(NO3)3·9H2O , 1999 .
[16] D. Hildenbrand,et al. Mass spectrum and sublimation pressure of sodium oxide vapor: Stability of the superoxide molecule NaO2 , 1993 .
[17] J. Mermet. Ionic to atomic line intensity ratio and residence time in inductively coupled plasma-atomic emission spectrometry , 1989 .
[18] M. Asano,et al. Mass spectrometric study of the vaporization of sodium borosilicate glasses , 1986 .
[19] T. Utsunomiya,et al. The reaction of sodium nitrite with silica. , 1983 .
[20] M. Cable. Kinetics of Volatilization of Sodium Borate Melts , 1978 .
[21] J. Margrave,et al. The vaporization of cesium nitrate , 1973 .
[22] J. Mukerji. Vaporisation of Cesium from Cesium Metaborate, Cesium Silicate, Cesium Borosilicate and Mixtures of Cesium Nitrate, Boric Oxide and Silica , 1971 .
[23] A. Büchler,et al. Gaseous Metaborates. I. Mass‐Spectrometric Study of the Vaporization of Lithium and Sodium Metaborates , 1963 .
[24] A. Büchler,et al. GASEOUS METABORATES. II. INFRARED SPECTRA OF ALKALI METABORATE VAPORS. Interim Technical Report No. 4 , 1963 .
[25] T. Garrett,et al. THE THERMAL DECOMPOSITION OF ANHYDROUS URANYL NITRATE AND URANYL NITRATE DIHYDRATE1 , 1961 .
[26] L. Pauling. The Nature Of The Chemical Bond , 1939 .
[27] S. Hendricks,et al. GRADUAL TRANSITION IN SODIUM NITRATE. II. THE STRUCTURE AT VARIOUS TEMPERATURES AND ITS BEARING ON MOLECULAR ROTATION , 1931 .
[28] G. Cartledge. STUDIES ON THE PERIODIC SYSTEM. II. THE IONIC POTENTIAL AND RELATED PROPERTIES1 , 1928 .
[29] G. Cartledge. STUDIES ON THE PERIODIC SYSTEM. I. THE IONIC POTENTIAL AS A PERIODIC FUNCTION1 , 1928 .