Thermo-physical behavior of borosilicate glasses in the presence of high-level radioactive liquid waste constituents

[1]  S. Rajasekaran,et al.  Simulated studies on optimization and characterization of feed and product of melter for safe disposal of high-level radioactive liquid waste , 2020 .

[2]  S. Rajasekaran,et al.  Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass , 2019, Nuclear Engineering and Technology.

[3]  S. Gin,et al.  Radionuclides containment in nuclear glasses: an overview , 2017 .

[4]  Juan Carlo Villalba,et al.  Decomposição térmica (TG-DTA) de sais de ferro [FeCl3.6H2O] e [Fe(NO3)3.9H2O] com análise morfológica e química do produto final , 2014 .

[5]  R. Short Phase Separation and Crystallisation in UK HLW Vitrified Products , 2014 .

[6]  N. Daskalova,et al.  Possibilities of High Resolution Inductively Coupled Plasma Optical Emission Spectrometry in the Determination of Trace Elements in Environmental Materials , 2013 .

[7]  L. C. Oliveira,et al.  Thermal decomposition mechanism of iron(III) nitrate and characterization of intermediate products by the technique of computerized modeling , 2013, Journal of Thermal Analysis and Calorimetry.

[8]  D. Caurant,et al.  Lanthanum and Neodymium Solubility in Simplified SiO2–B2O3–Na2O–Al2O3–CaO High Level Waste Glass , 2012 .

[9]  R. Viswanathan,et al.  Study of vaporization of sodium metaborate by transpiration thermogravimetry and Knudsen effusion mass spectrometry. , 2011, The journal of physical chemistry. B.

[10]  C. P. Kaushik,et al.  Barium borosilicate glass – a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste , 2006 .

[11]  William E. Lee,et al.  An Introduction to Nuclear Waste Immobilisation , 2005 .

[12]  J. Nóbrega,et al.  Analytical performance of an inductively coupled plasma optical emission spectrometry with dual view configuration , 2003 .

[13]  S. Stolyar,et al.  Vaporization and Thermodynamic Properties of Melts in the Na2O–B2O3–SiO2 System , 2002 .

[14]  N. B. Singh Preparation of metal oxides and chemistry of oxides ions in nitrate eutectic melt , 2002 .

[15]  K. Wieczorek-Ciurowa,et al.  The Thermal Decomposition of Fe(NO3)3·9H2O , 1999 .

[16]  D. Hildenbrand,et al.  Mass spectrum and sublimation pressure of sodium oxide vapor: Stability of the superoxide molecule NaO2 , 1993 .

[17]  J. Mermet Ionic to atomic line intensity ratio and residence time in inductively coupled plasma-atomic emission spectrometry , 1989 .

[18]  M. Asano,et al.  Mass spectrometric study of the vaporization of sodium borosilicate glasses , 1986 .

[19]  T. Utsunomiya,et al.  The reaction of sodium nitrite with silica. , 1983 .

[20]  M. Cable Kinetics of Volatilization of Sodium Borate Melts , 1978 .

[21]  J. Margrave,et al.  The vaporization of cesium nitrate , 1973 .

[22]  J. Mukerji Vaporisation of Cesium from Cesium Metaborate, Cesium Silicate, Cesium Borosilicate and Mixtures of Cesium Nitrate, Boric Oxide and Silica , 1971 .

[23]  A. Büchler,et al.  Gaseous Metaborates. I. Mass‐Spectrometric Study of the Vaporization of Lithium and Sodium Metaborates , 1963 .

[24]  A. Büchler,et al.  GASEOUS METABORATES. II. INFRARED SPECTRA OF ALKALI METABORATE VAPORS. Interim Technical Report No. 4 , 1963 .

[25]  T. Garrett,et al.  THE THERMAL DECOMPOSITION OF ANHYDROUS URANYL NITRATE AND URANYL NITRATE DIHYDRATE1 , 1961 .

[26]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[27]  S. Hendricks,et al.  GRADUAL TRANSITION IN SODIUM NITRATE. II. THE STRUCTURE AT VARIOUS TEMPERATURES AND ITS BEARING ON MOLECULAR ROTATION , 1931 .

[28]  G. Cartledge STUDIES ON THE PERIODIC SYSTEM. II. THE IONIC POTENTIAL AND RELATED PROPERTIES1 , 1928 .

[29]  G. Cartledge STUDIES ON THE PERIODIC SYSTEM. I. THE IONIC POTENTIAL AS A PERIODIC FUNCTION1 , 1928 .