Optimum design of composite laminates for minimum thickness

In this study, an optimization procedure is proposed to minimize thickness (or weight) of laminated composite plates subject to in-plane loading. Fiber orientation angles and layer thickness are chosen as design variables. Direct search simulated annealing (DSA), which is a reliable global search algorithm, is used to search the optimal design. Static failure criteria are used to determine whether load bearing capacity is exceeded for a configuration generated during the optimization process. In order to avoid spurious optimal designs, both the Tsai-Wu and the maximum stress criteria are employed to check static failure. Numerical results are obtained and presented for different loading cases.

[1]  Lucien A. Schmit,et al.  Optimum laminate design for strength and stiffness , 1973 .

[2]  Sarp Adali,et al.  Minimum cost design of hybrid composite cylinders with temperature dependent properties , 1997 .

[3]  G. N. Vanderplaats,et al.  Strength optimization of laminated composites with respect to layer thickness and/or layer orientation angle , 1991 .

[4]  Vasyl Harik,et al.  Optimization of structural designs for a safe failure pattern: layered material systems , 2001 .

[5]  Alain Vautrin,et al.  Weight minimization of composite laminated plates with multiple constraints , 2003 .

[6]  Kalyanmoy Deb,et al.  Optimum design of laminated composite plates with cutouts using a genetic algorithm , 1998 .

[7]  Lucien A. Schmit,et al.  Optimum design of laminated fibre composite plates , 1977 .

[8]  C. M. Mota Soares,et al.  Higher order models on the eigenfrequency analysis and optimal design of laminated composite structures , 1997 .

[9]  Franz-Joseph Barthold,et al.  Macro-failure criterion for the theory of laminated composite structures with free edge delaminations , 2000 .

[10]  M. Walker,et al.  A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis , 2003 .

[11]  Petri Kere,et al.  Using multicriterion optimization for strength design of composite laminates , 2003 .

[12]  Rodolphe Le Riche,et al.  Design of dimensionally stable composites by evolutionary optimization , 1998 .

[13]  Chun-Gon Kim,et al.  Minimum-weight design of compressively loaded composite plates and stiffened panels for postbuckling strength by Genetic Algorithm , 2003 .

[14]  Je Hoon Oh,et al.  Optimum bolted joints for hybrid composite materials , 1997 .

[15]  C. M. Mota Soares,et al.  Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells , 2000 .

[16]  S. K. Morton,et al.  Application of artificial neural networks for the optimum design of a laminated plate , 1996 .

[17]  Pavel Y. Tabakov,et al.  A technique for optimally designing engineering structures with manufacturing tolerances accounted for , 2007 .

[18]  Raphael T. Haftka,et al.  Design and optimization of laminated composite materials , 1999 .

[19]  Raphael T. Haftka,et al.  Anti-optimization technique for structural design under load uncertainties , 1998 .

[20]  Juhyun Park,et al.  Stacking sequence design of composite laminates for maximum strength using genetic algorithms , 2001 .

[21]  José Herskovits,et al.  A discrete model for the optimal design of thin composite plate-shell type structures using a two-level approach , 1995 .

[22]  Ghazi Abu-Farsakh,et al.  The use of an energy-based criterion to determine optimum configurations of fibrous composites , 1999 .

[23]  D. Perreux,et al.  A reliability method for optimization of [+ϕ, -ϕ]n fiber reinforced composite pipes , 2000, Reliab. Eng. Syst. Saf..

[24]  C. W. Kim,et al.  Optimal Stacking Sequence Design of Laminated Composite Shells , 1999 .

[25]  Layne T. Watson,et al.  COMPOSITE LAMINATE DESIGN OPTIMIZATION BY GENETIC ALGORITHM WITH GENERALIZED ELITIST SELECTION , 2001 .

[26]  Pavel Y. Tabakov,et al.  Multi-dimensional design optimisation of laminated structures using an improved genetic algorithm , 2001 .

[27]  George E. Weeks,et al.  Optimum design of composite laminates using genetic algorithms , 1992 .

[28]  Woonbong Hwang,et al.  Stacking sequence optimization of laminated plates , 1997 .

[29]  B. L. Karihaloo,et al.  Optimum In Situ Strength Design of Composite Laminates. Part II: Optimum Design , 1996 .

[30]  R. Haftka,et al.  Improved genetic algorithm for minimum thickness composite laminate design , 1995 .

[31]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[32]  M. Montaz Ali,et al.  A direct search variant of the simulated annealing algorithm for optimization involving continuous variables , 2002, Comput. Oper. Res..

[33]  Raphael T. Haftka,et al.  Optimization with non-homogeneous failure criteria like Tsai–Wu for composite laminates , 2006 .

[34]  M. Gherlone,et al.  Multiconstrained optimization of laminated and sandwich plates using evolutionary algorithms and higher-order plate theories , 2003 .

[35]  George Z. Voyiadjis,et al.  Mechanics of Composite Materials with MATLAB , 2005 .

[36]  Christos Kassapoglou,et al.  Stacking Sequence Blending of Multiple Composite Laminates Using Genetic Algorithms , 2002 .

[37]  Sarp Adali,et al.  Optimization of shear-deformable laminated plates under buckling and strength criteria , 1997 .

[38]  B. L. Karihaloo,et al.  Optimum in situ strength design of laminates under combined mechanical and thermal loads , 1999 .

[39]  Fazil O. Sonmez,et al.  Optimum design of composite laminates for maximum buckling load capacity using simulated annealing , 2005 .

[40]  Akram Y Abu-Odeh,et al.  Optimum design of composite plates using response surface method , 1998 .

[41]  Carlos A. Mota Soares,et al.  Optimization of multilaminated structures using higher-order deformation models , 1997 .