Divide-and-Conquer With Sequential Monte Carlo

ABSTRACT We propose a novel class of Sequential Monte Carlo (SMC) algorithms, appropriate for inference in probabilistic graphical models. This class of algorithms adopts a divide-and-conquer approach based upon an auxiliary tree-structured decomposition of the model of interest, turning the overall inferential task into a collection of recursively solved subproblems. The proposed method is applicable to a broad class of probabilistic graphical models, including models with loops. Unlike a standard SMC sampler, the proposed divide-and-conquer SMC employs multiple independent populations of weighted particles, which are resampled, merged, and propagated as the method progresses. We illustrate empirically that this approach can outperform standard methods in terms of the accuracy of the posterior expectation and marginal likelihood approximations. Divide-and-conquer SMC also opens up novel parallel implementation options and the possibility of concentrating the computational effort on the most challenging subproblems. We demonstrate its performance on a Markov random field and on a hierarchical logistic regression problem. Supplementary materials including proofs and additional numerical results are available online.

[1]  Eric Moulines,et al.  On parallel implementation of sequential Monte Carlo methods: the island particle model , 2013, Stat. Comput..

[2]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[3]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[4]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[5]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[6]  Fredrik Lindsten,et al.  Sequential Monte Carlo for Graphical Models , 2014, NIPS.

[7]  Rong Chen,et al.  Independent Particle Filters , 2005 .

[8]  Yee Whye Teh,et al.  Bayesian Agglomerative Clustering with Coalescents , 2007, NIPS.

[9]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[10]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[11]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[12]  MoulinesEric,et al.  On parallel implementation of sequential Monte Carlo methods , 2015 .

[13]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[14]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[15]  Andrew W. Moore,et al.  'N-Body' Problems in Statistical Learning , 2000, NIPS.

[16]  R. Douc,et al.  Limit theorems for weighted samples with applications to sequential Monte Carlo methods , 2008 .

[17]  R. Handel,et al.  Can local particle filters beat the curse of dimensionality , 2013, 1301.6585.

[18]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[19]  N. Chopin A sequential particle filter method for static models , 2002 .

[20]  Arnaud Doucet,et al.  Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo , 2011 .

[21]  P. Moral,et al.  On adaptive resampling strategies for sequential Monte Carlo methods , 2012, 1203.0464.

[22]  William T. Freeman,et al.  Nonparametric belief propagation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[23]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[24]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[25]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[26]  Petar M. Djuric,et al.  Resampling algorithms and architectures for distributed particle filters , 2005, IEEE Transactions on Signal Processing.

[27]  Andrew Gelman,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .

[28]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[29]  Anthony Lee,et al.  On the role of interaction in sequential Monte Carlo algorithms , 2013, 1309.2918.

[30]  Yee Whye Teh,et al.  Top-down particle filtering for Bayesian decision trees , 2013, ICML.

[31]  Yan Zhou,et al.  Toward Automatic Model Comparison: An Adaptive Sequential Monte Carlo Approach , 2016 .

[32]  Fredrik Lindsten,et al.  Sequential Monte Carlo methods for graphical models , 2014 .

[33]  P. Moral,et al.  On Adaptive Resampling Procedures for Sequential Monte Carlo Methods , 2008 .

[34]  Michael I. Jordan,et al.  Phylogenetic Inference via Sequential Monte Carlo , 2012, Systematic biology.

[35]  A. Doucet,et al.  Smoothing algorithms for state–space models , 2010 .

[36]  Yutaka Okabe,et al.  Probability-Changing Cluster Algorithm for Two-Dimensional XY and Clock Models , 2002 .

[37]  A. Gelman,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models: Multilevel structures , 2006 .

[38]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[39]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[40]  Roman Holenstein,et al.  Particle Markov chain Monte Carlo , 2009 .

[41]  J. Felsenstein Maximum-likelihood estimation of evolutionary trees from continuous characters. , 1973, American journal of human genetics.

[42]  Dragomir Anguelov,et al.  A General Algorithm for Approximate Inference and Its Application to Hybrid Bayes Nets , 1999, UAI.

[43]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[44]  Arnaud Doucet,et al.  Sequential Monte Carlo methods for Bayesian computation , 2006 .

[45]  Arnaud Doucet,et al.  Interacting sequential Monte Carlo samplers for trans-dimensional simulation , 2008, Comput. Stat. Data Anal..

[46]  A. M. Johansen,et al.  Towards Automatic Model Comparison: An Adaptive Sequential Monte Carlo Approach , 2013, 1303.3123.

[47]  Alexandros Beskos,et al.  On the convergence of adaptive sequential Monte Carlo methods , 2013, The Annals of Applied Probability.

[48]  Liangliang Wang,et al.  Entangled Monte Carlo , 2012, NIPS.

[49]  Yee Whye Teh,et al.  Expectation Particle Belief Propagation , 2015, NIPS.

[50]  A. Doucet,et al.  Sequential auxiliary particle belief propagation , 2005, 2005 7th International Conference on Information Fusion.

[51]  Nick Whiteley,et al.  Forest resampling for distributed sequential Monte Carlo , 2014, Stat. Anal. Data Min..

[52]  A. Doucet,et al.  Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.

[53]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[54]  Joseph Hilbe,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .