Divide-and-Conquer With Sequential Monte Carlo
暂无分享,去创建一个
F. Lindsten | A. M. Johansen | C. A. Naesseth | B. Kirkpatrick | T. B. Schön | J. A. D. Aston | A. Bouchard-Côté | Thomas Bo Schön | A. M. Johansen | F. Lindsten | A. Bouchard-Côté | J. Aston | B. Kirkpatrick
[1] Eric Moulines,et al. On parallel implementation of sequential Monte Carlo methods: the island particle model , 2013, Stat. Comput..
[2] A. Doucet,et al. A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .
[3] Eric Moulines,et al. Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..
[4] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[5] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[6] Fredrik Lindsten,et al. Sequential Monte Carlo for Graphical Models , 2014, NIPS.
[7] Rong Chen,et al. Independent Particle Filters , 2005 .
[8] Yee Whye Teh,et al. Bayesian Agglomerative Clustering with Coalescents , 2007, NIPS.
[9] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[10] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[11] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[12] MoulinesEric,et al. On parallel implementation of sequential Monte Carlo methods , 2015 .
[13] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[14] W. Gilks,et al. Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .
[15] Andrew W. Moore,et al. 'N-Body' Problems in Statistical Learning , 2000, NIPS.
[16] R. Douc,et al. Limit theorems for weighted samples with applications to sequential Monte Carlo methods , 2008 .
[17] R. Handel,et al. Can local particle filters beat the curse of dimensionality , 2013, 1301.6585.
[18] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[19] N. Chopin. A sequential particle filter method for static models , 2002 .
[20] Arnaud Doucet,et al. Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo , 2011 .
[21] P. Moral,et al. On adaptive resampling strategies for sequential Monte Carlo methods , 2012, 1203.0464.
[22] William T. Freeman,et al. Nonparametric belief propagation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[23] M. Plummer,et al. CODA: convergence diagnosis and output analysis for MCMC , 2006 .
[24] D. Thouless,et al. Ordering, metastability and phase transitions in two-dimensional systems , 1973 .
[25] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[26] Petar M. Djuric,et al. Resampling algorithms and architectures for distributed particle filters , 2005, IEEE Transactions on Signal Processing.
[27] Andrew Gelman,et al. Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .
[28] Jun S. Liu,et al. Sequential Imputations and Bayesian Missing Data Problems , 1994 .
[29] Anthony Lee,et al. On the role of interaction in sequential Monte Carlo algorithms , 2013, 1309.2918.
[30] Yee Whye Teh,et al. Top-down particle filtering for Bayesian decision trees , 2013, ICML.
[31] Yan Zhou,et al. Toward Automatic Model Comparison: An Adaptive Sequential Monte Carlo Approach , 2016 .
[32] Fredrik Lindsten,et al. Sequential Monte Carlo methods for graphical models , 2014 .
[33] P. Moral,et al. On Adaptive Resampling Procedures for Sequential Monte Carlo Methods , 2008 .
[34] Michael I. Jordan,et al. Phylogenetic Inference via Sequential Monte Carlo , 2012, Systematic biology.
[35] A. Doucet,et al. Smoothing algorithms for state–space models , 2010 .
[36] Yutaka Okabe,et al. Probability-Changing Cluster Algorithm for Two-Dimensional XY and Clock Models , 2002 .
[37] A. Gelman,et al. Data Analysis Using Regression and Multilevel/Hierarchical Models: Multilevel structures , 2006 .
[38] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[39] P. Fearnhead,et al. Improved particle filter for nonlinear problems , 1999 .
[40] Roman Holenstein,et al. Particle Markov chain Monte Carlo , 2009 .
[41] J. Felsenstein. Maximum-likelihood estimation of evolutionary trees from continuous characters. , 1973, American journal of human genetics.
[42] Dragomir Anguelov,et al. A General Algorithm for Approximate Inference and Its Application to Hybrid Bayes Nets , 1999, UAI.
[43] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[44] Arnaud Doucet,et al. Sequential Monte Carlo methods for Bayesian computation , 2006 .
[45] Arnaud Doucet,et al. Interacting sequential Monte Carlo samplers for trans-dimensional simulation , 2008, Comput. Stat. Data Anal..
[46] A. M. Johansen,et al. Towards Automatic Model Comparison: An Adaptive Sequential Monte Carlo Approach , 2013, 1303.3123.
[47] Alexandros Beskos,et al. On the convergence of adaptive sequential Monte Carlo methods , 2013, The Annals of Applied Probability.
[48] Liangliang Wang,et al. Entangled Monte Carlo , 2012, NIPS.
[49] Yee Whye Teh,et al. Expectation Particle Belief Propagation , 2015, NIPS.
[50] A. Doucet,et al. Sequential auxiliary particle belief propagation , 2005, 2005 7th International Conference on Information Fusion.
[51] Nick Whiteley,et al. Forest resampling for distributed sequential Monte Carlo , 2014, Stat. Anal. Data Min..
[52] A. Doucet,et al. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.
[53] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[54] Joseph Hilbe,et al. Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .