Pseudomonas aeruginosa as a model microorganism for investigation of chemotactic behaviors in ecosystem.

Motile bacteria sense changes in the concentration of chemicals in environments and respond in a behavioral manner. This behavioral response is called chemotaxis. Bacterial chemotaxis can be viewed as an important prelude to metabolism, prey-predator relationships, symbiosis, infections, and other ecological interactions in biological communities. Genome analysis reveals that a large number of environmental motile bacteria possess a number of genes involved in chemosensing and chemotatic signal transduction. Pseudomonas aeruginosa has a very complex chemosensory system with more than 20 chemotaxis (che) genes in five distinct clusters and 26 chemoreceptor (methyl-accepting chemotaxis protein [mcp]) genes. Among the 26 MCPs of P. aeruginosa, nine have been identified as MCPs for amino acids, inorganic phosphate, oxygen, ethylene, and volatile chlorinated aliphatic hydrocarbons, whereas 3 MCPs were demonstrated to be involved in biofilm formation and biosynthesis of type IV pilus. Six che genes are essential for chemotactic responses, while genes in Pil-Chp cluster and Wsp cluster are involved in type IV pilus synthesis and twitching motility and biofilm formation, respectively. P. aeruginosa, with its complex chemotaxis system, is a better model microorganism for investigating ecological aspects of chemotaxis in environmental bacteria than Escherichia coli and Salmonella enterica serovar Typhimurium, which possess a relatively simpler chemotaxis system.

[1]  H. Ohtake,et al.  Chemotaxis proteins and transducers for aerotaxis in Pseudomonas aeruginosa. , 2004, FEMS microbiology letters.

[2]  H. Ohtake,et al.  Cloning and characterization of Pseudomonas putida genes encoding the phosphate-specific transport system. , 1999, Journal of bioscience and bioengineering.

[3]  R. Macnab,et al.  Flagella and motility , 1996 .

[4]  J. Adler Chemotaxis in Bacteria , 1966, Science.

[5]  Noboru Takiguchi,et al.  Expression of Pseudomonas aeruginosa aer-2, One of Two Aerotaxis Transducer Genes, Is Controlled by RpoS , 2005, Journal of bacteriology.

[6]  D. Tifrea,et al.  A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Mattick,et al.  Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa , 2004, Molecular microbiology.

[8]  S. Farrand,et al.  Opine catabolic loci from Agrobacterium plasmids confer chemotaxis to their cognate substrates. , 1998, Molecular plant-microbe interactions : MPMI.

[9]  S. Silver,et al.  Phosphate in Microorganisms: Cellular and Molecular Biology , 1994 .

[10]  J. Mattick,et al.  An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. , 2000, Microbiology.

[11]  Th. W. Engelmann,et al.  Zur Biologie der Schizomyceten , 1881, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[12]  H. Ohtake,et al.  Molecular cloning and characterization of a chemotactic transducer gene in Pseudomonas aeruginosa , 1995, Journal of bacteriology.

[13]  P. Bakker,et al.  Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots , 1987, Journal of bacteriology.

[14]  B. Wanner,et al.  Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli , 1992, Journal of bacteriology.

[15]  H. Ohtake,et al.  Evaluation of bacterial aerotaxis for its potential use in detecting the toxicity of chemicals to microorganisms. , 2003, Journal of biotechnology.

[16]  D. Thornton,et al.  Mucinophilic and chemotactic properties of Pseudomonas aeruginosa in relation to pulmonary colonization in cystic fibrosis , 1990, Infection and immunity.

[17]  H. Ohtake,et al.  Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. , 1997, Microbiology.

[18]  B. Wanner Phosphorus assimilation and control of the phosphate regulon , 1996 .

[19]  T. Montie,et al.  Chemotaxis to oligopeptides by Pseudomonas aeruginosa , 1994, Applied and environmental microbiology.

[20]  J. S. Parkinson,et al.  Copyright © 1997, American Society for Microbiology A Signal Transducer for Aerotaxis in Escherichia coli , 1997 .

[21]  H. Ohtake,et al.  Identification and Characterization of Two Chemotactic Transducers for Inorganic Phosphate in Pseudomonas aeruginosa , 2022 .

[22]  H. Ohtake,et al.  Rapid Method for Analyzing Bacterial Behavioral Responses to Chemical Stimuli , 1992, Applied and environmental microbiology.

[23]  Daniel O. Carmany,et al.  Genetic and Biochemical Studies of Phosphatase Activity of PhoR , 2003, Journal of bacteriology.

[24]  Trichloroethylene health risks--state of the science. , 2000, Environmental health perspectives.

[25]  D. Tifrea,et al.  Two different Pseudomonas aeruginosa chemosensory signal transduction complexes localize to cell poles and form and remould in stationary phase , 2006, Molecular microbiology.

[26]  A. Darzins Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus , 1994, Molecular microbiology.

[27]  Caroline S. Harwood,et al.  Cluster II che Genes from Pseudomonas aeruginosa Are Required for an Optimal Chemotactic Response , 2002, Journal of bacteriology.

[28]  H. Ohtake,et al.  Isolation and characterization of Enterobacter cloacae mutants which are defective in chemotaxis toward inorganic phosphate , 1997, Journal of bacteriology.

[29]  C. Harwood,et al.  Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. , 2002, Current opinion in microbiology.

[30]  H. Ohtake,et al.  Identification and Characterization of the Chemotactic Transducer in Pseudomonas aeruginosa PAO1 for Positive Chemotaxis to Trichloroethylene , 2006, Journal of bacteriology.

[31]  A. Darzins The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY , 1993, Journal of bacteriology.

[32]  M. J. Kennedy,et al.  Role of Chemotaxis in the Ecology of Denitrifiers , 1985, Applied and environmental microbiology.

[33]  H. Ohtake,et al.  Isolation and characterization of chemotaxis mutants and genes of Pseudomonas aeruginosa , 1995, Journal of bacteriology.

[34]  Jian Yao,et al.  Chemotaxis Is Required for Virulence and Competitive Fitness of the Bacterial Wilt Pathogen Ralstonia solanacearum , 2006, Journal of bacteriology.

[35]  N. Panopoulos Role of Flagellar Motility in the Invasion of Bean Leaves by Pseudomonas phaseolicola , 1974 .

[36]  H. Ohtake,et al.  Cloning and characterization of a Pseudomonas aeruginosa gene involved in the negative regulation of phosphate taxis , 1994, Journal of bacteriology.

[37]  J. Kato,et al.  Ethylene Chemotaxis in Pseudomonas aeruginosa and Other Pseudomonas Species , 2007 .

[38]  H. Ohtake,et al.  Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa. , 1999, Bioscience, biotechnology, and biochemistry.

[39]  I. Chet,et al.  Ecological aspects of microbial chemotactic behavior. , 1976, Annual review of microbiology.

[40]  H. Ohtake,et al.  Molecular analysis of the phosphate-specific transport (pst) operon ofPseudomonas aeruginosa , 1996, Molecular and General Genetics MGG.

[41]  M. Schuster,et al.  The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing , 2004, Molecular microbiology.

[42]  J. S. Parkinson,et al.  Genetic evidence for interaction between the CheW and Tsr proteins during chemoreceptor signaling by Escherichia coli , 1991, Journal of bacteriology.

[43]  D. Hassett,et al.  BdlA, a Chemotaxis Regulator Essential for Biofilm Dispersion in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[44]  H. Ohtake,et al.  Identification of chemosensory proteins for trichloroethylene in Pseudomonas aeruginosa. , 2005, Journal of bioscience and bioengineering.

[45]  G. Caetano-Anollés,et al.  Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes , 1988, Journal of bacteriology.

[46]  J. L. Ditty,et al.  Toluene-Degrading Bacteria Are Chemotactic towards the Environmental Pollutants Benzene, Toluene, and Trichloroethylene , 2000, Applied and Environmental Microbiology.

[47]  R. Hancock,et al.  Phosphate transport in Pseudomonas aeruginosa. Involvement of a periplasmic phosphate-binding protein. , 1984, European journal of biochemistry.

[48]  T. Fenchel Microbial Behavior in a Heterogeneous World , 2002, Science.

[49]  I. Zhulin,et al.  The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[50]  I. Zhulin,et al.  The superfamily of chemotaxis transducers: from physiology to genomics and back. , 2001, Advances in microbial physiology.

[51]  I. Zhulin,et al.  PAS Domains: Internal Sensors of Oxygen, Redox Potential, and Light , 1999, Microbiology and Molecular Biology Reviews.

[52]  H. Ohtake,et al.  The aerotaxis transducer gene aer, but not aer-2, is transcriptionally regulated by the anaerobic regulator ANR in Pseudomonas aeruginosa. , 2004, Journal of bioscience and bioengineering.

[53]  J. Adler A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. , 1973, Journal of general microbiology.

[54]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[55]  W. Boos,et al.  Evolution of chemotactic-signal transducers in enteric bacteria , 1989, Journal of bacteriology.

[56]  J. Vanderleyden,et al.  Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. , 2002, Molecular plant-microbe interactions : MPMI.

[57]  H. Ohtake,et al.  Phosphate taxis in Pseudomonas aeruginosa , 1992, Journal of bacteriology.

[58]  T. Montie,et al.  Chemotaxis by Pseudomonas aeruginosa , 1979, Journal of bacteriology.

[59]  T. Montie,et al.  Flagella, motility and invasive virulence of Pseudomonas aeruginosa. , 1988, Journal of general microbiology.

[60]  R. Hancock,et al.  Regulation of components of the Pseudomonas aeruginosa phosphate‐starvation‐inducible regulon in Escherichia coli , 1988, Molecular microbiology.