Recovery of Signal Projection in Wavelet Space

A new cost function is proposed to recover signal pro- jection in wavelet Space. It is shown that if an interpolation func- tion exists in the wavelet subspace, then the recovery of signal is identical to the minimization of cost function, which projects the signal on the approximation space. At last, the simulation proves our conclusion.

[1]  Naoki Saito,et al.  Multiresolution representations using the autocorrelation functions of compactly supported wavelets , 1993, IEEE Trans. Signal Process..

[2]  Ran Tao,et al.  Spectral Analysis and Reconstruction for Periodic Nonuniformly Sampled Signals in Fractional Fourier Domain , 2007, IEEE Transactions on Signal Processing.

[3]  Naoki Saito,et al.  Multiresolution representations using the auto-correlation functions of compactly supported wavelets , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[4]  F. Marvasti Nonuniform sampling : theory and practice , 2001 .

[5]  Youming Liu Irregular Sampling for Spline Wavelet Subspaces , 1996, IEEE Trans. Inf. Theory.

[6]  Minh N. Do,et al.  A Theory for Sampling Signals from a Union of Subspaces , 2022 .

[7]  Roland Opfer,et al.  Multiscale kernels , 2006, Adv. Comput. Math..

[8]  Jared Tanner,et al.  Fast Reconstruction Methods for Bandlimited Functions from Periodic Nonuniform Sampling , 2006, SIAM J. Numer. Anal..

[9]  Wenchang Sun,et al.  Sampling theorem for wavelet subspaces: error estimate and irregular sampling , 2000, IEEE Trans. Signal Process..

[10]  Peyman Milanfar,et al.  INTERPOLATION-RESTORATION METHOD FOR SUPERRESOLUTION (WAVELET SUPERRESOLUTION)* , 2000 .

[11]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[12]  Andrzej Tarczynski,et al.  Spectral analysis of randomly sampled signals: suppression of aliasing and sampler jitter , 2004, IEEE Transactions on Signal Processing.

[13]  Shuichi Itoh,et al.  Irregular Sampling Theorems for Wavelet Subspaces , 1998, IEEE Trans. Inf. Theory.

[14]  S. Mallat A wavelet tour of signal processing , 1998 .

[15]  P. Vaidyanathan Generalizations of the sampling theorem: Seven decades after Nyquist , 2001 .

[16]  Gilbert G. Walter,et al.  A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.

[17]  Woula Themistoclakis,et al.  Interpolating polynomial wavelets on [−1,1] , 2004, Adv. Comput. Math..

[18]  Lenan Wu,et al.  Translation invariance and sampling theorem of wavelet , 2000, IEEE Trans. Signal Process..

[19]  Jianzhong Wang,et al.  Interpolating Cubic Spline Wavelet Packet on Arbitrary Partitions , 2003 .