Perception of Harmonic and Inharmonic Sounds: Results from Ear Models

We report on experiments in which musically relevant harmonic and inharmonic sounds have been fed into computer-based ear models (or into modules which at least simulate parts of the peripheral auditory system) working either in the frequency or in the time domain. For a major chord in just intonation, all algorithms produced reliable and interpretable output, which explains mechanisms of pitch perception. One model also yields data suited to demonstrate how sensory consonance and 'fusion' are contained in the ACF of the neural activity pattern. With musical sounds from instruments (carillon, gamelan ) which represent different degrees of inharmonicity, the performance of the modules reflects difficulties in finding correct spectral and/or virtual pitch(es) known also from behavioral experiments. Our measurements corroborate findings from neurophysiology according to which much of the neural processing relevant for perception of pitch and consonance is achieved subcortically.

[1]  Marc Leman,et al.  Music, Gestalt, and Computing , 1997, Lecture Notes in Computer Science.

[2]  E. Lopez-Poveda,et al.  A human nonlinear cochlear filterbank. , 2001, The Journal of the Acoustical Society of America.

[3]  D. J. Hermes,et al.  Measurement of pitch by subharmonic summation. , 1988, The Journal of the Acoustical Society of America.

[4]  Marc Leman,et al.  Sonological and psychoacoustic characteristics of carillon bells , 2002 .

[5]  Marc Leman,et al.  Music and Schema Theory , 1995 .

[6]  G. Wilkinson The Theory of Hearing , 1925, Nature.

[7]  B. Delgutte,et al.  Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. , 1996, Journal of neurophysiology.

[8]  F. H. Adler Cybernetics, or Control and Communication in the Animal and the Machine. , 1949 .

[9]  J. Sloboda The Musical Mind: The Cognitive Psychology of Music , 1987 .

[10]  Günter Ehret,et al.  The Central Auditory System , 1996 .

[11]  John A. Sloboda,et al.  The musical mind , 1986 .

[12]  B. Roberts Spectral pattern, grouping, and the pitches of complex tones and their components , 2005 .

[13]  Enrique A Lopez-Poveda,et al.  Spectral processing by the peripheral auditory system: facts and models. , 2005, International review of neurobiology.

[14]  Rolf Bader Computational mechanics of the classical guitar , 2005 .

[15]  Paul Boersma,et al.  Praat, a system for doing phonetics by computer , 2002 .

[16]  Adrianus J.M. Houtsma,et al.  Chapter 8 – Pitch Perception , 1995 .

[17]  Albrecht Schneider,et al.  Inharmonic Sounds: Implications as to «Pitch», «Timbre» and «Consonance» , 2000 .

[18]  M. Sams,et al.  Musicians have enhanced subcortical auditory and audiovisual processing of speech and music , 2007, Proceedings of the National Academy of Sciences.

[20]  A. Schneider Tonhöhe, Skala, Klang : akustische, tonometrische und psychoakustische Studien auf vergleichender Grundlage , 1997 .

[21]  [The phenomenon of hearing: an interdisciplinary discussion. II]. , 1992, Die Naturwissenschaften.

[22]  Eric Clarke,et al.  Ways of Listening: An Ecological Approach to the Perception of Musical Meaning , 2005 .

[23]  Albrecht Schneider,et al.  "Verschmelzung", Tonal Fusion, and Consonance: Carl Stumpf Revisited , 1996, Joint International Conference on Cognitive and Systematic Musicology.

[24]  R. Meddis,et al.  A unitary model of pitch perception. , 1997, The Journal of the Acoustical Society of America.

[25]  M. Sanders Handbook of Sensory Physiology , 1975 .

[26]  Donal G Sinex,et al.  Spectral processing and sound source determination. , 2005, International review of neurobiology.

[27]  Florian Keiler,et al.  ANALYSIS OF TRANSIENT MUSICAL SOUNDS BY AUTO-REGRESSIVE MODELING , 2003 .

[28]  S Grossberg,et al.  A spectral network model of pitch perception. , 1995, The Journal of the Acoustical Society of America.

[29]  Ray Meddis,et al.  Virtual pitch and phase sensitivity of a computer model of the auditory periphery , 1991 .

[30]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[31]  E. Terhardt,et al.  Pitch of complex signals according to virtual‐pitch theory: Tests, examples, and predictions , 1982 .

[32]  Norbert Wiener,et al.  Cybernetics: Control and Communication in the Animal and the Machine. , 1949 .

[33]  Ray Meddis,et al.  Auditory-nerve first-spike latency and auditory absolute threshold: a computer model. , 2006, The Journal of the Acoustical Society of America.

[34]  R. Meddis,et al.  Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II: Phase sensitivity , 1991 .

[35]  B. Delgutte,et al.  Neurobiological Foundations for the Theory of Harmony in Western Tonal Music , 2001, Annals of the New York Academy of Sciences.

[36]  M. Gazzaniga The cognitive neurosciences, 3rd edition , 2004 .

[37]  E. Terhardt,et al.  Algorithm for extraction of pitch and pitch salience from complex tonal signals , 1982 .

[38]  Manfred Clynes,et al.  Music, Mind, and Brain , 1982, Springer US.

[39]  S. Handel Listening As Introduction to the Perception of Auditory Events , 1989 .

[40]  Alain de Cheveigné,et al.  Pitch perception models , 2005 .

[41]  Carl Stumpf,et al.  Die Sprachlaute: Experimentell-Phonetische Untersuchungen , 1926 .

[42]  Albrecht Schneider,et al.  Sound, pitch, and scale : From tone measurements to sonological analysis in ethnomusicology , 2001 .

[43]  Marc Leman,et al.  Music and Schema Theory : Cognitive Foundations of Systematic Musicology , 1995 .

[44]  Das Phänomen des Hörens: Ein interdisziplinärer Diskurs , 1992, Naturwissenschaften.

[45]  Norbert Wiener,et al.  Cybernetics, Second Edition: or the Control and Communication in the Animal and the Machine , 1965 .

[46]  S. McAdams,et al.  Auditory Cognition. (Book Reviews: Thinking in Sound. The Cognitive Psychology of Human Audition.) , 1993 .

[47]  A. Bregman Auditory Scene Analysis , 2008 .

[48]  Mira Balaban,et al.  Understanding music with AI: perspectives on music cognition , 1992 .

[49]  Ernst Terhardt,et al.  Calculating virtual pitch , 1979, Hearing Research.

[50]  Jean Philippe Rameau,et al.  Traité de l'harmonie , 1992 .

[51]  P. Boersma Praat : doing phonetics by computer (version 5.1.05) , 2009 .

[52]  B. Delgutte,et al.  Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch. , 1996, Journal of neurophysiology.

[53]  M. Leman Cognitive Foundations of Systematic Musicology , 1995 .

[54]  Stephen T. Neely,et al.  Signals, Sound, and Sensation , 1997 .

[55]  Eric Clarke,et al.  Ways of Listening , 2005 .

[56]  Q. Summerfield Book Review: Auditory Scene Analysis: The Perceptual Organization of Sound , 1992 .

[57]  Norbert Wiener,et al.  Cybernetics, or control and communication in the animal and the machine, 2nd ed. , 1961 .

[58]  P. Boersma ACCURATE SHORT-TERM ANALYSIS OF THE FUNDAMENTAL FREQUENCY AND THE HARMONICS-TO-NOISE RATIO OF A SAMPLED SOUND , 1993 .

[59]  E. de Boer,et al.  On the “Residue” and Auditory Pitch Perception , 1976 .

[60]  R. Patterson,et al.  Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. , 1995, The Journal of the Acoustical Society of America.

[61]  A. Oxenham,et al.  The psychophysics of pitch , 2005 .

[62]  Richard R. Fay,et al.  The Mammalian Auditory Pathway: Neurophysiology , 1992, Springer Handbook of Auditory Research.

[63]  Shihab Shamma,et al.  Auditory Representations of Timbre and Pitch , 1996 .

[64]  Hugo Fastl,et al.  Psychoacoustics Facts and Models. 2nd updated edition , 1999 .