High probability analysis of the condition number of sparse polynomial systems

Let f := (f1 ..... fn) be a random polynomial system with fixed n-tuple of supports. Our main result is an upper bound on the probability that the condition number of f in a region U is larger than 1/e. The bound depends on an integral of a differential form on a toric manifold and admits a simple explicit upper bound when the Newton polytopes (and underlying variances) are all identical.We also consider polynomials with real coefficients and give bounds for the expected number of real roots and (restricted) condition number. Using a Kahler geometric framework throughout, we also express the expected number of roots of f inside a region U as the integral over U of a certain mixed volume form, thus recovering the classical mixed volume when U = (C*)n.

[1]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[2]  S. Smale,et al.  Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .

[3]  Oleg Viro,et al.  Dequantization of Real Algebraic Geometry on Logarithmic Paper , 2000, math/0005163.

[4]  Alan Edelman,et al.  How many zeros of a random polynomial are real , 1995 .

[5]  T. Delzant,et al.  Hamiltoniens périodiques et images convexes de l'application moment , 1988 .

[6]  Martin Sombra Successive minima of projective toric varieties , 2002 .

[7]  S. Smale,et al.  Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .

[8]  Mikael Passare,et al.  Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope. , 2004 .

[9]  Gregorio Malajovich,et al.  Tangent Graeffe iteration , 2001, Numerische Mathematik.

[10]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[11]  E. Kostlan On the Distribution of Roots of Random Polynomials , 1993 .

[12]  Victor Y. Pan,et al.  Accelerated Solution of Multivariate Polynomial Systems of Equations , 2003, SIAM J. Comput..

[13]  Claude Viterbo,et al.  An introduction to symplectic topology , 1991 .

[14]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[15]  S. Sternberg,et al.  Convexity properties of the moment mapping , 1982 .

[16]  Shlomo Sternberg,et al.  Convexity properties of the moment mapping. II , 1982 .

[17]  J. Maurice Rojas,et al.  Polynomial Systems and the Momentum Map , 2001 .

[18]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[19]  M. Gromov,et al.  Convex sets and K?ahler manifolds , 1990 .

[20]  Victor Guillemin,et al.  Moment Maps and Combinatorial Invariants of Hamiltonian Tn-spaces , 1994 .

[21]  J. Maurice Rojas,et al.  Random Sparse Polynomial Systems , 2000 .

[22]  S. Smale,et al.  Topology and mechanics. I , 1970 .

[23]  Michael Atiyah,et al.  Convexity and Commuting Hamiltonians , 1982 .

[24]  J. M. Rojas,et al.  On the Average Number of Real Roots of Certain Random Sparse Polynomial Systems , 1996 .

[25]  P. Mcmullen GEOMETRIC INEQUALITIES (Grundlehren der mathematischen Wissenschaften 285) , 1989 .

[26]  Michael Atiyah Angular momentum, convex Polyhedra and Algebraic Geometry , 1983 .

[27]  J. Verschelde,et al.  Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .

[28]  Grigory Mikhalkin Amoebas of algebraic varieties , 2001 .

[29]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[30]  Xing Li,et al.  Finding Mixed Cells in the Mixed Volume Computation , 2001, Found. Comput. Math..

[31]  Andrew McLennan,et al.  The expected number of real roots of a multihomogeneous system of polynomial equations , 1999, math/9904120.

[32]  A. Turing,et al.  On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction , 1938 .

[33]  J. M. Rojas Algebraic Geometry Over Four Rings and the Frontier to Tractability , 2000, math/0005204.

[34]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[35]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[36]  Gregorio Malajovich,et al.  On the Geometry of Graeffe Iteration , 2001, J. Complex..

[37]  Grégoire Lecerf,et al.  Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers , 2003, J. Complex..

[38]  M. Atiyah,et al.  Angular momentum, convex Polyhedra and Algebraic Geometry , 1983, Proceedings of the Edinburgh Mathematical Society.

[39]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[40]  Stephen Smale,et al.  Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..

[41]  In Minnesota. , 1910 .

[42]  J.-M. Souriau,et al.  Structure des systèmes dynamiques : maîtrises de mathématiques , 1970 .

[43]  Mordecai Avriel,et al.  Nonlinear programming , 1976 .

[44]  G. Ewald Combinatorial Convexity and Algebraic Geometry , 1996 .

[45]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .