Z(5): Critical Point Symmetry for the Prolate to Oblate Nuclear Shape Phase Transition

[1]  Frank Wannemaker,et al.  Nuclear Structure From A Simple Perspective , 2016 .

[2]  R. C. Johnson,et al.  Angular Momentum in Quantum Mechanics , 2015 .

[3]  D. Lenis,et al.  Ground state bands of the E(5) and X(5) critical symmetries obtained from Davidson potentials through a variational procedure , 2003, nucl-th/0312121.

[4]  R. Casten,et al.  Test of X(5) for theγdegree of freedom , 2003 .

[5]  F. Iachello Phase transitions in angle variables. , 2003, Physical review letters.

[6]  J. Jolie,et al.  Prolate - oblate phase transition in the Hf - Hg mass region , 2003 .

[7]  S. Heinze,et al.  Triple point of nuclear deformations. , 2002, Physical review letters.

[8]  J. Cooper,et al.  B(E2) values in 150Nd and the critical point symmetry X(5). , 2002, Physical review letters.

[9]  D. S. Brenner,et al.  Pd-102: An E(5) nucleus? , 2002 .

[10]  R. Casten,et al.  Singular character of critical points in nuclei , 2001, nucl-th/0106051.

[11]  R. Casten,et al.  Quantum phase transition for gamma-soft nuclei. , 2001, Physical review letters.

[12]  R. Casten,et al.  Quantum Phase Transition for γ -Soft Nuclei , 2001 .

[13]  R. Casten,et al.  Empirical realization of a critical point description in atomic nuclei. , 2001, Physical review letters.

[14]  F. Iachello Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. , 2001, Physical review letters.

[15]  Iachello Dynamic symmetries at the critical point , 2000, Physical review letters.

[16]  Zamfir,et al.  Evidence for a possible E(5) symmetry in 134Ba , 2000, Physical review letters.

[17]  D. Rowe,et al.  Rotation-vibrational spectra of diatomic molecules and nuclei with Davidson interactions , 1998 .

[18]  Z. Chunmei,et al.  Regular ArticleNuclear Data Sheets for A = 196☆ , 1998 .

[19]  R. Casten,et al.  Signatures of γ softness or triaxiality in low energy nuclear spectra , 1991 .

[20]  T. Otsuka,et al.  Davydov-filippov limit of the IBM , 1989 .

[21]  Otsuka,et al.  Equivalence between gamma instability and rigid triaxiality in finite boson systems. , 1987, Physical review letters.

[22]  J. Elliott,et al.  A soluble γ-unstable hamiltonian , 1986 .

[23]  A. Klein The interacting boson model. , 1982, Science.

[24]  J. Meyer-ter-Vehn The 0(6) limit of the interacting boson model and its relation to triaxial nuclear models , 1979 .

[25]  F. Stephens,et al.  Prolate-oblate transition in Nd isotopes , 1978 .

[26]  J. Meyer-ter-Vehn Collective model description of transitional odd-A nuclei: (I). The triaxial-rotor-plus-particle model , 1975 .

[27]  STEVE ZUPONCIC,et al.  Data sheets , 1973 .

[28]  A. Davydov Collective excitations corresponding to quadrupole nuclear surface vibrations , 1961 .

[29]  A. Davydov,et al.  Relative transition probabilities between rotational levels of non-axial nuclei , 1959 .

[30]  A. Davydov,et al.  Rotational states in even atomic nuclei , 1958 .

[31]  L. Wilets,et al.  SURFACE OSCILLATIONS IN EVEN-EVEN NUCLEI , 1956 .

[32]  I. N. Sneddon,et al.  Nuclear Models , 2009, Compendium of Quantum Physics.

[33]  P. Davidson Eigenfunctions for calculating electronic vibrational intensities , 1932 .

[34]  E. GWYNNE JONES,et al.  Nuclear Structure , 1932, Nature.