Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder

Deep probabilistic generative models enable modeling the likelihoods of very high dimensional data. An important application of generative modeling should be the ability to detect out-of-distribution (OOD) samples by setting a threshold on the likelihood. However, a recent study shows that probabilistic generative models can, in some cases, assign higher likelihoods on certain types of OOD samples, making the OOD detection rules based on likelihood threshold problematic. To address this issue, several OOD detection methods have been proposed for deep generative models. In this paper, we make the observation that some of these methods fail when applied to generative models based on Variational Auto-encoders (VAE). As an alternative, we propose Likelihood Regret, an efficient OOD score for VAEs. We benchmark our proposed method over existing approaches, and empirical results suggest that our method obtains the best overall OOD detection performances compared with other OOD method applied on VAE.

[1]  Guillaume Desjardins,et al.  Understanding disentangling in β-VAE , 2018, ArXiv.

[2]  Yang Song,et al.  Unsupervised Out-of-Distribution Detection with Batch Normalization , 2019, ArXiv.

[3]  Yali Amit,et al.  Generative Latent Flow , 2019 .

[4]  Yee Whye Teh,et al.  Detecting Out-of-Distribution Inputs to Deep Generative Models Using a Test for Typicality , 2019, ArXiv.

[5]  Mohammad Norouzi,et al.  Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One , 2019, ICLR.

[6]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[7]  Karol Gregor,et al.  Temporal Difference Variational Auto-Encoder , 2018, ICLR.

[8]  Kibok Lee,et al.  A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks , 2018, NeurIPS.

[9]  John Schulman,et al.  Concrete Problems in AI Safety , 2016, ArXiv.

[10]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[11]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[12]  Toby P. Breckon,et al.  GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training , 2018, ACCV.

[13]  Shai Shalev-Shwartz,et al.  Online learning: theory, algorithms and applications (למידה מקוונת.) , 2007 .

[14]  Alex Lamb,et al.  Deep Learning for Classical Japanese Literature , 2018, ArXiv.

[15]  Jordi Luque,et al.  Input complexity and out-of-distribution detection with likelihood-based generative models , 2020, ICLR.

[16]  Yee Whye Teh,et al.  Do Deep Generative Models Know What They Don't Know? , 2018, ICLR.

[17]  Yingyang Chen,et al.  Time Series Anomaly Detection with Variational Autoencoders , 2019, ArXiv.

[18]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[19]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[20]  See-Kiong Ng,et al.  Anomaly Detection with Generative Adversarial Networks for Multivariate Time Series , 2018, ArXiv.

[21]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[22]  Jasper Snoek,et al.  Likelihood Ratios for Out-of-Distribution Detection , 2019, NeurIPS.

[23]  R. Srikant,et al.  Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks , 2017, ICLR.

[24]  Exact Information Bottleneck with Invertible Neural Networks: Getting the Best of Discriminative and Generative Modeling , 2020, ArXiv.

[25]  Sungzoon Cho,et al.  Variational Autoencoder based Anomaly Detection using Reconstruction Probability , 2015 .

[26]  David P. Wipf,et al.  Diagnosing and Enhancing VAE Models , 2019, ICLR.

[27]  Bo Zong,et al.  Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection , 2018, ICLR.

[28]  Alexander A. Alemi,et al.  WAIC, but Why? Generative Ensembles for Robust Anomaly Detection , 2018 .

[29]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[30]  Pramod K. Varshney,et al.  Anomalous Instance Detection in Deep Learning: A Survey , 2020, ArXiv.

[31]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[32]  Yee Whye Teh,et al.  Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality , 2019 .

[33]  Max Welling,et al.  Variational Graph Auto-Encoders , 2016, ArXiv.

[34]  Oriel Frigo,et al.  Iterative energy-based projection on a normal data manifold for anomaly localization , 2020, ICLR.

[35]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[36]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[37]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[38]  Dániel Varga,et al.  Negative Sampling in Variational Autoencoders , 2019, ArXiv.

[39]  Thomas G. Dietterich,et al.  Deep Anomaly Detection with Outlier Exposure , 2018, ICLR.

[40]  Ole Winther,et al.  BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling , 2019, NeurIPS.

[41]  Jason Yosinski,et al.  Deep neural networks are easily fooled: High confidence predictions for unrecognizable images , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Yinda Zhang,et al.  LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop , 2015, ArXiv.

[43]  Graham W. Taylor,et al.  Learning Confidence for Out-of-Distribution Detection in Neural Networks , 2018, ArXiv.

[44]  Matthew D. Hoffman,et al.  Variational Autoencoders for Collaborative Filtering , 2018, WWW.

[45]  Jan Kautz,et al.  Unsupervised Image-to-Image Translation Networks , 2017, NIPS.

[46]  Yang Feng,et al.  Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications , 2018, WWW.

[47]  C. Metz Basic principles of ROC analysis. , 1978, Seminars in nuclear medicine.

[48]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[49]  Rick Salay,et al.  Improving Reconstruction Autoencoder Out-of-distribution Detection with Mahalanobis Distance , 2018, ArXiv.

[50]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[51]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[52]  Xi Chen,et al.  PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications , 2017, ICLR.

[53]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.