Big Data Analysis

The value of big data is predicated on the ability to detect trends and patterns and more generally to make sense of the large volumes of data that is often comprised of a heterogeneous mix of format, structure, and semantics. Big data analysis is the component of the big data value chain that focuses on transforming raw acquired data into a coherent usable resource suitable for analysis. Using a range of interviews with key stakeholders in small and large companies and academia, this chapter outlines key insights, state of the art, emerging trends, future requirements, and sectorial case studies for data analysis.

[1]  Harald Sack,et al.  Evaluating Entity Summarization Using a Game-Based Ground Truth , 2012, International Semantic Web Conference.

[2]  Dieter Fensel,et al.  Unifying Reasoning and Search to Web Scale , 2007, IEEE Internet Computing.

[3]  Dieter Fensel,et al.  Effective and Efficient Online Communication - The Channel Model , 2012, DATA.

[4]  Richard N. Taylor,et al.  Flexible Social Workflows: Collaborations as Human Architecture , 2012, IEEE Internet Computing.

[5]  Matthew Rowe,et al.  Predicting Discussions on the Social Semantic Web , 2011, ESWC.

[6]  Marc'Aurelio Ranzato,et al.  Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[8]  Daniele Braga,et al.  C-SPARQL: a Continuous Query Language for RDF Data Streams , 2010, Int. J. Semantic Comput..

[9]  Javier A. Barria,et al.  Anomaly Detection using Microscopic Traffic Variables on Freeway Segments , 2010 .

[10]  Siegfried Handschuh,et al.  Getting the Meaning Right: A Complementary Distributional Layer for the Web Semantics , 2011, SEMWEB.

[11]  Sebastian Rudolph,et al.  ETALIS: Rule-Based Reasoning in Event Processing , 2011 .

[12]  Schahram Dustdar,et al.  A Novel Approach to Modeling Context-Aware and Social Collaboration Processes , 2012, CAiSE.

[13]  Maximilian Walther,et al.  Geo-spatial Event Detection in the Twitter Stream , 2013, ECIR.

[14]  Tom Heath,et al.  Linked Data: Evolving the Web into a Global Data Space , 2011, Linked Data.

[15]  Seán O'Riain,et al.  Distributional Relational Networks , 2013, AAAI Fall Symposia.

[16]  Edward Curry,et al.  Approximate Semantic Matching of Events for the Internet of Things , 2014, ACM Trans. Internet Techn..

[17]  Dieter Fensel,et al.  Sparkwave: continuous schema-enhanced pattern matching over RDF data streams , 2012, DEBS.

[18]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[19]  Maria E. Niessen,et al.  Analyzing Tweets to Aid Situational Awareness , 2014, ECIR.

[20]  Holger Ziekow,et al.  ARCHITECT: A layered framework for classifying technologies of event-based systems , 2011, Inf. Syst..

[21]  Ioannis Stavrakantonakis,et al.  Semantically Assisted Workflow Patterns for the Social Web , 2013, ESWC.

[22]  Jade Goldstein-Stewart,et al.  The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.

[23]  Jorge J. Gómez-Sanz,et al.  User-Oriented Analysis of Interactions in Online Social Networks , 2012, IEEE Intelligent Systems.

[24]  Ioannis Stavrakantonakis Personal Data and User Modelling in Tourism , 2013, ENTER.

[25]  Wil M. P. van der Aalst,et al.  Workflow Patterns , 2004, Distributed and Parallel Databases.

[26]  Yuzhong Qu,et al.  RELIN: Relatedness and Informativeness-Based Centrality for Entity Summarization , 2011, International Semantic Web Conference.

[27]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[28]  Joseph M. Hellerstein,et al.  GraphLab: A New Framework For Parallel Machine Learning , 2010, UAI.

[29]  Matthias Weidlich,et al.  Event Recognition Challenges and Techniques , 2014, ACM Trans. Internet Techn..

[30]  Ioan Toma,et al.  Leveraging Usage Data for Linked Data Movie Entity Summarization , 2012, ArXiv.

[31]  André Freitas,et al.  Natural language queries over heterogeneous linked data graphs: a distributional-compositional semantics approach , 2014, IUI.

[32]  Kunle Olukotun,et al.  Map-Reduce for Machine Learning on Multicore , 2006, NIPS.

[33]  Peter Mika Ontologies Are Us: A Unified Model of Social Networks and Semantics , 2005, International Semantic Web Conference.

[34]  Yuzhong Qu,et al.  Falcons: searching and browsing entities on the semantic web , 2008, WWW.

[35]  Dieter Fensel,et al.  Towards LarKC: A Platform for Web-Scale Reasoning , 2008, 2008 IEEE International Conference on Semantic Computing.