Spatially adaptive, Bayesian estimation for probabilistic temperature forecasts

Uncertainty in the prediction of future weather is commonly assessed through the use of forecast ensembles that employ a numerical weather prediction model in distinct variants. Statistical postprocessing can correct for biases in the numerical model and improves calibration. We propose a Bayesian version of the standard ensemble model output statistics (EMOS) postprocessing method, in which spatially varying bias coefficients are interpreted as realizations of Gaussian Markov random fields. Our Markovian EMOS (MEMOS) technique utilizes the recently developed stochastic partial differential equation (SPDE) and integrated nested Laplace approximation (INLA) methods for computationally efficient inference. The MEMOS approach shows good predictive performance in a comparative study of 24-hour ahead temperature forecasts over Germany based on the 50-member ensemble of the European Centre for Medium-Range Weather Forecasting (ECMWF).

[1]  Roman Schefzik Multivariate discrete copulas, with applications in probabilistic weather forecasting , 2015, 1512.05629.

[2]  D. Wilks Multivariate ensemble Model Output Statistics using empirical copulas , 2015 .

[3]  Finn Lindgren,et al.  Bayesian Spatial Modelling with R-INLA , 2015 .

[4]  T. Thorarinsdottir,et al.  Spatial Postprocessing of Ensemble Forecasts for Temperature Using Nonhomogeneous Gaussian Regression , 2014, 1407.0058.

[5]  F. Pappenberger,et al.  Trends in the predictive performance of raw ensemble weather forecasts , 2014 .

[6]  G. König,et al.  Gridded, locally calibrated, probabilistic temperature forecasts based on ensemble model output statistics , 2014 .

[7]  M. Scheuerer,et al.  Spatially adaptive post‐processing of ensemble forecasts for temperature , 2013, 1302.0883.

[8]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[9]  T. Gneiting,et al.  Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling , 2013, 1302.7149.

[10]  M. Scheuerer Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics , 2013, 1302.0893.

[11]  Thordis L. Thorarinsdottir,et al.  Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas , 2012, 1202.3956.

[12]  Gianluca Baio,et al.  Spatial and spatio-temporal models with R-INLA. , 2013, Spatial and spatio-temporal epidemiology.

[13]  Tilmann Gneiting,et al.  Geostatistical Model Averaging for Locally Calibrated Probabilistic Quantitative Precipitation Forecasting , 2011 .

[14]  Amanda S. Hering,et al.  Comparing Spatial Predictions , 2011, Technometrics.

[15]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[16]  Adrian E. Raftery,et al.  Locally Calibrated Probabilistic Temperature Forecasting Using Geostatistical Model Averaging and Local Bayesian Model Averaging , 2011 .

[17]  Tilmann Gneiting,et al.  Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression , 2010 .

[18]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[19]  Bob Glahn,et al.  The Gridding of MOS , 2009 .

[20]  Daniela Cocchi,et al.  A Bayesian Hierarchical Approach to Ensemble Weather Forecasting , 2008 .

[21]  Martyn P. Clark,et al.  Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling , 2008 .

[22]  Tim N. Palmer,et al.  Ensemble forecasting , 2008, J. Comput. Phys..

[23]  Thomas M. Hamill,et al.  Comparison of Ensemble-MOS Methods Using GFS Reforecasts , 2007 .

[24]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[25]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[26]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[27]  S. Martino Approximate Bayesian Inference for Latent Gaussian Models , 2007 .

[28]  P. Guttorp,et al.  Studies in the history of probability and statistics XLIX On the Matérn correlation family , 2006 .

[29]  T. Gneiting,et al.  The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification , 2006 .

[30]  Adrian E. Raftery,et al.  Weather Forecasting with Ensemble Methods , 2005, Science.

[31]  Anton H. Westveld,et al.  Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation , 2005 .

[32]  A. Raftery,et al.  Using Bayesian Model Averaging to Calibrate Forecast Ensembles , 2005 .

[33]  Tilmann Gneiting,et al.  Calibrated Probabilistic Mesoscale Weather Field Forecasting , 2004 .

[34]  Andrew F. Loughe,et al.  The Relationship between Ensemble Spread and Ensemble Mean Skill , 1998 .

[35]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[36]  O. Barndorff-Nielsen,et al.  Normal Variance-Mean Mixtures and z Distributions , 1982 .

[37]  H. Künsch Gaussian Markov random fields , 1979 .