The Architecture of SARS-CoV-2 Transcriptome

[1]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[2]  Mi Seon Kim,et al.  Identification of Coronavirus Isolated from a Patient in Korea with COVID-19 , 2020, Osong public health and research perspectives.

[3]  G. Gao,et al.  A Novel Coronavirus from Patients with Pneumonia in China, 2019 , 2020, The New England journal of medicine.

[4]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[5]  S. Horner,et al.  Regulation of Viral Infection by the RNA Modification N6-methyladenosine. , 2019, Annual review of virology.

[6]  J. Ziebuhr,et al.  Identification and Characterization of a Human Coronavirus 229E Nonstructural Protein 8-Associated RNA 3′-Terminal Adenylyltransferase Activity , 2019, Journal of Virology.

[7]  Manja Marz,et al.  Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis , 2018, bioRxiv.

[8]  A. Dziembowski,et al.  Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  A. Firth,et al.  Transcriptional and Translational Landscape of Equine Torovirus , 2018, Journal of Virology.

[10]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[11]  Daniel R. Garalde,et al.  Highly parallel direct RNA sequencing on an array of nanopores , 2016, Nature Methods.

[12]  Edward M Kennedy,et al.  Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication. , 2017, Cell host & microbe.

[13]  Ji Eun Lee,et al.  De novo Identification of DNA Modifications Enabled by Genome-Guided Nanopore Signal Processing , 2017, bioRxiv.

[14]  Vineet D. Menachery,et al.  Jumping species—a mechanism for coronavirus persistence and survival , 2017, Current Opinion in Virology.

[15]  S. Horner,et al.  RNA modifications go viral , 2017, PLoS pathogens.

[16]  W. Humphreys,et al.  In Vitro Metabolite Formation in Human Hepatocytes and Cardiomyocytes and Metabolism and Tissue Distribution in Monkeys of the 2′-C-Methylguanosine Prodrug BMS-986094 , 2017, International journal of toxicology.

[17]  Chuan He,et al.  Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. , 2016, Cell host & microbe.

[18]  Alexa B. R. McIntyre,et al.  N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection , 2016, Cell host & microbe.

[19]  J. Ziebuhr,et al.  The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing , 2016, Advances in Virus Research.

[20]  I. Brierley,et al.  High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling , 2016, PLoS pathogens.

[21]  I. Sola,et al.  Continuous and Discontinuous RNA Synthesis in Coronaviruses. , 2015, Annual review of virology.

[22]  Hung-Yi Wu,et al.  Regulation of Coronaviral Poly(A) Tail Length during Infection , 2013, Virus Genes.

[23]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[24]  P. D. Nagy,et al.  Defective Interfering RNAs: Foes of Viruses and Friends of Virologists , 2009, Viruses.

[25]  Houping Ni,et al.  Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. , 2005, Immunity.

[26]  P. Stepien,et al.  Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase. , 2004, Nucleic acids research.

[27]  W. Spaan,et al.  Replication of Synthetic Defective Interfering RNAs Derived from Coronavirus Mouse Hepatitis Virus-A59 , 1996, Virology.

[28]  M. Lai,et al.  Three different cellular proteins bind to complementary sites on the 5'-end-positive and 3'-end-negative strands of mouse hepatitis virus RNA , 1993, Journal of virology.

[29]  M. Lai,et al.  RNA recombination in a coronavirus: recombination between viral genomic RNA and transfected RNA fragments , 1992, Journal of virology.

[30]  T. Nilsen,et al.  Unequal distribution of N6-methyladenosine in influenza virus mRNAs , 1987, Molecular and cellular biology.

[31]  M. Lai,et al.  Comparative analysis of RNA genomes of mouse hepatitis viruses , 1981, Journal of virology.

[32]  H. Shibuta,et al.  Polyadenylate in the Virion RNA of Mouse Hepatitis Virus , 1977, Journal of biochemistry.

[33]  R. Krug,et al.  Influenza viral mRNA contains internal N6-methyladenosine and 5'-terminal 7-methylguanosine in cap structures , 1976, Journal of virology.