Phase Structure of Quantum Improved Schwarzschild-(Anti)de Sitter Black Holes

We study the phase structure of quantum improved Schwarzschild-(A)dS black holes in asymptotically safe gravity. The quantum effect provides a repulsive force in the core region near singularity which stabilizes the thermodynamically unstable small black holes. It also creates a zero temperature state with finite size which could be a candidate for dark matter. Moreover, there is a new second order phase transition between small and large black holes for quantum improved Schwarzschild-Anti de Sitter black holes. We also discuss the black holes with different spatial topologies and find a notable duality.

[1]  Johanna N. Borissova,et al.  Formation and evaporation of quantum black holes from the decoupling mechanism in quantum gravity , 2022, Journal of High Energy Physics.

[2]  R. Mann,et al.  Negative mass black holes in de Sitter space , 2022, Physical Review D.

[3]  S. Gangopadhyay,et al.  Black hole thermodynamics in asymptotically safe gravity , 2022, General Relativity and Gravitation.

[4]  A. Ishibashi,et al.  Running Newton coupling, scale identification, and black hole thermodynamics , 2022, Physical Review D.

[5]  A. Ishibashi,et al.  Quantum improved charged black holes , 2021, Physical Review D.

[6]  Y. Ong,et al.  No evidence for violation of the second law in extended black hole thermodynamics , 2019, Physical Review D.

[7]  E. Howard Quantum gravity and the functional renormalization group: the road towards asymptotic safety , 2019, Contemporary Physics.

[8]  Jan M. Pawlowski,et al.  Quantum-improved Schwarzschild-(A)dS and Kerr-(A)dS spacetimes , 2018, Physical Review D.

[9]  Roberto Percacci,et al.  An Introduction to Covariant Quantum Gravity and Asymptotic Safety , 2017 .

[10]  B. Koch,et al.  Improved Reissner–Nordström–(A)dS black hole in asymptotic safety , 2015, 1508.01502.

[11]  B. Koch,et al.  Black hole solutions for scale-dependent couplings: the de Sitter and the Reissner–Nordström case , 2015, 1501.00904.

[12]  B. Koch,et al.  Scale Setting for Self-consistent Backgrounds , 2014, 1409.4443.

[13]  Daniel F. Litim,et al.  Black Hole Thermodynamics Under the Microscope , 2012, 1212.1821.

[14]  Benjamin Koch,et al.  Structural aspects of asymptotically safe black holes , 2013, 1306.1546.

[15]  Martin Reuter,et al.  QED coupled to QEG , 2011, 1101.6007.

[16]  B. Koch,et al.  Exact renormalization group with optimal scale and its application to cosmology , 2010, 1010.2799.

[17]  M. Reuter,et al.  Quantum gravity effects in the Kerr spacetime , 2010, 1009.3528.

[18]  Alfio Bonanno,et al.  Spacetime structure of an evaporating black hole in quantum gravity , 2006 .

[19]  R. Wald The Thermodynamics of Black Holes , 1999, Living reviews in relativity.

[20]  A. Bonanno,et al.  Renormalization group improved black hole spacetimes , 2000, hep-th/0002196.

[21]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[22]  R. Mann Black holes of negative mass , 1997, gr-qc/9705007.

[23]  D. Page,et al.  Thermodynamics of black holes in anti-de Sitter space , 1983 .

[24]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .