Cost-sensitive and modular land-cover classification based on posterior probability estimates

Many types of nonlinear classifiers have been proposed to automatically generate land-cover maps from satellite images. Some are based on the estimation of posterior class probabilities, whereas others estimate the decision boundary directly. In this paper, we propose a modular design able to focus the learning process on the decision boundary by using posterior probability estimates. To do so, we use a self-configuring architecture that incorporates specialized modules to deal with conflicting classes, and we apply a learning algorithm that focuses learning on the posterior probability regions that are critical for the performance of the decision problem stated by the user-defined misclassification costs. Moreover, we show that by filtering the posterior probability map, the impulsive noise, which is a common effect in automatic land-cover classification, can be significantly reduced. Experimental results show the effectiveness of the proposed solutions on real multi- and hyperspectral images, versus other typical approaches, that are not based on probability estimates, such as Support Vector Machines.

[1]  Lorenzo Bruzzone An approach to feature selection and classification of remote sensing images based on the Bayes rule for minimum cost , 2000, IEEE Trans. Geosci. Remote. Sens..

[2]  Pierre Soille,et al.  Advances in mathematical morphology applied to geoscience and remote sensing , 2002, IEEE Trans. Geosci. Remote. Sens..

[3]  A. Zellner Bayesian Estimation and Prediction Using Asymmetric Loss Functions , 1986 .

[4]  Barak A. Pearlmutter,et al.  Equivalence Proofs for Multi-Layer Perceptron Classifiers and the Bayesian Discriminant Function , 1991 .

[5]  Bruce W. Suter,et al.  The multilayer perceptron as an approximation to a Bayes optimal discriminant function , 1990, IEEE Trans. Neural Networks.

[6]  Constantinos S. Pattichis,et al.  Classification capacity of a modular neural network implementing neurally inspired architecture and training rules , 2004, IEEE Transactions on Neural Networks.

[7]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[8]  Jon Sticklen,et al.  Knowledge-based segmentation of Landsat images , 1991, IEEE Trans. Geosci. Remote. Sens..

[9]  Jesús Cid-Sueiro,et al.  Local estimation of posterior class probabilities to minimize classification errors , 2004, IEEE Transactions on Neural Networks.

[10]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[11]  Thomas G. Dietterich,et al.  Bootstrap Methods for the Cost-Sensitive Evaluation of Classifiers , 2000, ICML.

[12]  I. L. Thomas Spartially postprocessing of spectrally classified Landsat data. , 1980 .

[13]  Arun Kulkarni,et al.  Knowledge discovery from multispectral satellite images , 2004, IEEE Geoscience and Remote Sensing Letters.

[14]  P. Lombardo,et al.  Improved classification of SAR images by segmentation and fusion with optical images , 2002, RADAR 2002.

[15]  Alain Hillion,et al.  An information fusion method for multispectral image classification postprocessing , 1998, IEEE Trans. Geosci. Remote. Sens..

[16]  Grégoire Mercier,et al.  Estimation and monitoring of bare soil/vegetation ratio with SPOT VEGETATION and HRVIR , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Biing-Hwang Juang,et al.  Discriminative learning for minimum error classification [pattern recognition] , 1992, IEEE Trans. Signal Process..

[19]  Hai Do-Tu,et al.  Learning Algorithms for Nonparametric Solution to the Minimum Error Classification Problem , 1978, IEEE Transactions on Computers.

[20]  Sarunas Raudys,et al.  Evolution and generalization of a single neurone: : II. Complexity of statistical classifiers and sample size considerations , 1998, Neural Networks.

[21]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[22]  Mahmood R. Azimi-Sadjadi,et al.  A study of cloud classification with neural networks using spectral and textural features , 1999, IEEE Trans. Neural Networks.

[23]  Ashok N. Srivastava,et al.  Virtual sensors: using data mining techniques to efficiently estimate remote sensing spectra , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[25]  Nasser M. Nasrabadi,et al.  Fusion techniques for automatic target recognition , 2003, 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings..

[26]  Robert H. Fraser,et al.  Automatic Detection of Fire Smoke Using Artificial Neural Networks and Threshold Approaches Applied to AVHRR Imagery , 2001 .

[27]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Wooil M. Moon,et al.  Data fusion of multiple polarimetric SAR images using discrete wavelet transform (DWT) , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[29]  Padhraic Smyth,et al.  Objective functions for probability estimation , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[30]  Sarunas Raudys,et al.  Evolution and generalization of a single neurone: I. Single-layer perceptron as seven statistical classifiers , 1998, Neural Networks.

[31]  S. Katagiri,et al.  Discriminative Learning for Minimum Error Classification , 2009 .

[32]  G. Peter Zhang,et al.  The Effect of Misclassification Costs on Neural Network Classifiers , 1999 .

[33]  Horst Bischof,et al.  Finding optimal neural networks for land use classification , 1998, IEEE Trans. Geosci. Remote. Sens..

[34]  S. K. Basu,et al.  Robust classification of multispectral data using multiple neural networks and fuzzy integral , 1997, IEEE Trans. Geosci. Remote. Sens..

[35]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[36]  Mahmood R. Azimi-Sadjadi,et al.  Comparison of two different PNN training approaches for satellite cloud data classification , 2001, IEEE Trans. Neural Networks.

[37]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[38]  Yun Zhang,et al.  Detection of urban housing development by fusing multisensor satellite data and performing spatial feature post-classification , 2001 .

[39]  Barnali M. Dixon,et al.  Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? , 2008 .

[40]  Richard Lippmann,et al.  Neural Network Classifiers Estimate Bayesian a posteriori Probabilities , 1991, Neural Computation.

[41]  Jon Atli Benediktsson,et al.  A new approach for the morphological segmentation of high-resolution satellite imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[42]  Carla E. Brodley,et al.  Pruning Decision Trees with Misclassification Costs , 1998, ECML.

[43]  Jack Sklansky,et al.  Linear classifiers by window training , 1995, IEEE Trans. Syst. Man Cybern..

[44]  Hongliang Fang,et al.  Retrieving leaf area index with a neural network method: simulation and validation , 2003, IEEE Trans. Geosci. Remote. Sens..

[45]  James Williamson,et al.  A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data , 2001, IEEE Trans. Geosci. Remote. Sens..

[46]  Fang Qiu,et al.  A Neural Network Image Interpretation System to Extract Rural and Urban Land Use and Land Cover Information from Remote Sensor Data , 2001 .

[47]  Jesús Cid-Sueiro,et al.  Loss functions to combine learning and decision in multiclass problems , 2005, Neurocomputing.

[48]  K. Fukunaga Chapter 11 – CLUSTERING , 1990 .

[49]  P. C. Smits,et al.  QUALITY ASSESSMENT OF IMAGE CLASSIFICATION ALGORITHMS FOR LAND-COVER MAPPING , 1999 .

[50]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[51]  Ola M. Johannessen,et al.  Multisensor approach to automated classification of sea ice image data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Michael J. Pazzani,et al.  Reducing Misclassification Costs , 1994, ICML.

[53]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Domingo Docampo,et al.  Growing Gaussian mixtures network for classification applications , 1999, Signal Process..

[55]  A. Agrawal,et al.  Multispectral image classification: a supervised neural computation approach based on rough–fuzzy membership function and weak fuzzy similarity relation , 2007 .

[56]  Fabio Del Frate,et al.  On neural network algorithms for retrieving forest biomass from SAR data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Jesús Cid-Sueiro,et al.  A model selection algorithm for a posteriori probability estimation with neural networks , 2005, IEEE Transactions on Neural Networks.

[58]  José Antonio Torres Arriaza,et al.  An automatic cloud-masking system using backpro neural nets for AVHRR scenes , 2003, IEEE Trans. Geosci. Remote. Sens..

[59]  G. Foody,et al.  Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions , 1994 .

[60]  Robert De Wulf,et al.  Land cover mapping at sub-pixel scales using linear optimization techniques , 2002 .

[61]  Silas C. Michaelides,et al.  Multifeature texture analysis for the classification of clouds in satellite imagery , 2003, IEEE Trans. Geosci. Remote. Sens..

[62]  Masayuki Tamura,et al.  Accuracy of land cover area estimated from coarse spatial resolution images using an unmixing method , 2004 .

[63]  Horst Bischof,et al.  Multispectral classification of Landsat-images using neural networks , 1992, IEEE Trans. Geosci. Remote. Sens..

[64]  Lorenzo Bruzzone,et al.  An advanced system for the automatic classification of multitemporal SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[65]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[67]  Lalit Kumar,et al.  Comparative assessment of the measures of thematic classification accuracy , 2007 .

[68]  Yu Qian,et al.  Spatial contextual noise removal for post classification smoothing of remotely sensed images , 2005, SAC '05.

[69]  Giles M. Foody,et al.  RVM‐based multi‐class classification of remotely sensed data , 2008 .

[70]  Lorenzo Bruzzone,et al.  An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images , 1996, Pattern Recognit. Lett..

[71]  Jesús Cid-Sueiro,et al.  Saturated Perceptrons for Maximum Margin and Minimum Misclassification Error , 2004, Neural Processing Letters.