Bio-Inspired and Information-Theoretic Signal Processing

[1]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[2]  Deniz Erdogmus,et al.  An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems , 2002, IEEE Trans. Signal Process..

[3]  Arie Yeredor,et al.  On blind channel identification and equalization over Galois fields , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[4]  Donald F. Specht,et al.  A general regression neural network , 1991, IEEE Trans. Neural Networks.

[5]  Nathalie Delfosse,et al.  Adaptive blind separation of independent sources: A deflation approach , 1995, Signal Process..

[6]  B. Schrauwen,et al.  Reservoir computing and extreme learning machines for non-linear time-series data analysis , 2013, Neural Networks.

[7]  Arie Yeredor,et al.  Independent Component Analysis Over Galois Fields of Prime Order , 2011, IEEE Transactions on Information Theory.

[8]  Levy Boccato,et al.  Multivariate PDF matching via kernel density estimation , 2014, 2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP).

[9]  Arie Yeredor,et al.  ICA in Boolean XOR Mixtures , 2007, ICA.

[10]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[11]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[12]  José Carlos Príncipe,et al.  Using Correntropy as a cost function in linear adaptive filters , 2009, 2009 International Joint Conference on Neural Networks.

[13]  José Carlos Príncipe,et al.  Fast algorithm for adaptive blind equalization using order-α Renyi's entropy , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[14]  Brendan J. Frey,et al.  Detecting MicroRNA Targets by Linking Sequence, MicroRNA and Gene Expression Data , 2006, RECOMB.

[15]  A. Benveniste,et al.  Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications , 1980 .

[16]  Ibrahim A. Ahmad,et al.  A nonparametric estimation of the entropy for absolutely continuous distributions (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[17]  Fernando José Von Zuben,et al.  Performance analysis of nonlinear echo state network readouts in signal processing tasks , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[18]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[19]  Y. Wu,et al.  Maximum likelihood joint channel and data estimation using genetic algorithms , 1998, IEEE Trans. Signal Process..

[20]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[21]  Deniz Erdogmus,et al.  Adaptive blind deconvolution of linear channels using Renyi's entropy with Parzen window estimation , 2004, IEEE Transactions on Signal Processing.

[22]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[23]  Chee Kheong Siew,et al.  Universal Approximation using Incremental Constructive Feedforward Networks with Random Hidden Nodes , 2006, IEEE Transactions on Neural Networks.

[24]  Fernando José Von Zuben,et al.  An extended echo state network using Volterra filtering and principal component analysis , 2012, Neural Networks.

[25]  Jeffrey S. Mayer,et al.  Symbolic dynamic filtering of complex systems , 2007 .

[26]  Deniz Erdoğmuş,et al.  Blind source separation using Renyi's mutual information , 2001, IEEE Signal Processing Letters.

[27]  Deniz Erdogmus,et al.  An analysis of entropy estimators for blind source separation , 2006, Signal Process..

[28]  C.F.N. Cowan,et al.  Adaptive equalization of finite nonlinear channels using multilayer perceptron , 1990 .

[29]  B. Dorizzi,et al.  A neural predictor for blind equalization of digital communication systems , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[30]  Fernando José Von Zuben,et al.  Nonlinear Blind Source Deconvolution Using Recurrent Prediction-Error Filters and an Artificial Immune System , 2009, ICA.

[31]  Levy Boccato,et al.  A comparative study of non-MSE criteria in nonlinear equalization , 2014, 2014 International Telecommunications Symposium (ITS).

[32]  Deniz Erdogmus,et al.  Matched pdf-based blind equalization , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[33]  Weifeng Liu,et al.  Correntropy: Properties and Applications in Non-Gaussian Signal Processing , 2007, IEEE Transactions on Signal Processing.

[34]  J. Bee Bednar,et al.  L1 deconvolution and its application to seismic signal processing , 1986, IEEE Trans. Acoust. Speech Signal Process..

[35]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[36]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[37]  Levy Boccato,et al.  Unorganized Machines: From Turing's Ideas to Modern Connectionist Approaches , 2011, Int. J. Nat. Comput. Res..

[38]  J. Rice,et al.  Norms for Smoothing and Estimation , 1964 .

[39]  José Carlos Príncipe,et al.  Correntropy as a novel measure for nonlinearity tests , 2009, Signal Process..

[40]  José Carlos Príncipe,et al.  Generalized correlation function: definition, properties, and application to blind equalization , 2006, IEEE Transactions on Signal Processing.

[41]  Stefan J. Kiebel,et al.  Re-visiting the echo state property , 2012, Neural Networks.

[42]  K. Nose-Filho,et al.  Preprocessing data for short-term load forecasting with a general regression neural network and a moving average filter , 2011, 2011 IEEE Trondheim PowerTech.

[43]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[44]  Dean J. Krusienski,et al.  Particle swarm optimization for adaptive IIR filter structures , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[45]  Deniz Erdogmus,et al.  Stochastic blind equalization based on PDF fitting using Parzen estimator , 2005, IEEE Transactions on Signal Processing.

[46]  Everton Z. Nadalin,et al.  An immune-inspired information-theoretic approach to the problem of ICA over a Galois field , 2011, 2011 IEEE Information Theory Workshop.

[47]  Deniz Erdogmus,et al.  Entropy minimization for supervised digital communications channel equalization , 2002, IEEE Trans. Signal Process..

[48]  Shun-ichi Amari,et al.  Adaptive blind signal processing-neural network approaches , 1998, Proc. IEEE.

[49]  Sheng Chen,et al.  A clustering technique for digital communications channel equalization using radial basis function networks , 1993, IEEE Trans. Neural Networks.

[50]  Jacek M. Zurada,et al.  Nonlinear Blind Source Separation Using a Radial Basis Function Network , 2001 .

[51]  Everton Z. Nadalin,et al.  Blind separation of convolutive mixtures over Galois fields , 2013, 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[52]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[53]  Hugues Bersini,et al.  Revisiting Idiotypic Immune Networks , 2003, ECAL.

[54]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[55]  Shang‐keng Ma Calculation of entropy from data of motion , 1981 .

[56]  Fernando José Von Zuben,et al.  Self-organization and lateral interaction in echo state network reservoirs , 2014, Neurocomputing.

[57]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[58]  Ying Zhao,et al.  Particle swarm optimization algorithm in signal detection and blind extraction , 2004, 7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings..

[59]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[60]  S. Nadarajah A generalized normal distribution , 2005 .

[61]  Lakhmi C. Jain,et al.  Recurrent Neural Networks: Design and Applications , 1999 .

[62]  Elias S. Manolakos,et al.  Using recurrent neural networks for adaptive communication channel equalization , 1994, IEEE Trans. Neural Networks.

[63]  Herbert Jaeger,et al.  Reservoir computing approaches to recurrent neural network training , 2009, Comput. Sci. Rev..

[64]  David B. Fogel,et al.  CONTINUOUS EVOLUTIONARY PROGRAMMING: ANALYSIS AND EXPERIMENTS , 1995 .

[65]  Everton Z. Nadalin,et al.  A Michigan-like immune-inspired framework for performing independent component analysis over Galois fields of prime order , 2014, Signal Process..

[66]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[67]  Deniz Erdoğmuş,et al.  Online entropy manipulation: stochastic information gradient , 2003, IEEE Signal Processing Letters.

[68]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications , 2008, Natural Computing.

[69]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[70]  Vahid Tabataba Vakili,et al.  Modified Particle Swarm Optimization for Blind Deconvolution and Identification of Multichannel FIR Filters , 2010, EURASIP J. Adv. Signal Process..

[71]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[72]  Dianhui Wang,et al.  Extreme learning machines: a survey , 2011, Int. J. Mach. Learn. Cybern..

[73]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[74]  Jochen J. Steil,et al.  Improving reservoirs using intrinsic plasticity , 2008, Neurocomputing.

[75]  Danilo P. Mandic,et al.  Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability , 2001 .

[76]  Weifeng Liu,et al.  A unifying criterion for instantaneous blind source separation based on correntropy , 2007, Signal Process..

[77]  Michael N. Vrahatis,et al.  Particle swarm optimization for integer programming , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[78]  Arie Yeredor,et al.  ICA over finite fields - Separability and algorithms , 2012, Signal Process..

[79]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part I: background and development , 2007, Natural Computing.

[80]  Deniz Erdogmus,et al.  Generalized information potential criterion for adaptive system training , 2002, IEEE Trans. Neural Networks.

[81]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[82]  Harold W. Gutch,et al.  ICA over Finite Fields , 2010, LVA/ICA.

[83]  K. Nose-Filho,et al.  Short-Term Multinodal Load Forecasting Using a Modified General Regression Neural Network , 2011, IEEE Transactions on Power Delivery.

[84]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[85]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[86]  Levy Boccato,et al.  Application of natural computing algorithms to maximum likelihood estimation of direction of arrival , 2012, Signal Process..

[87]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.