Extended wet-spinning can modify spider silk properties.

Contrary to expectation, we demonstrate that spider dragline silk spun experimentally under water displays greater stiffness and higher resilience compared to silk spun "naturally" into air. We suggest that this consequence of extended wet-spinning is due to increased molecular orientation resulting from extension of the mobile phase.

[1]  Thierry Lefèvre,et al.  Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy. , 2004, Biomacromolecules.

[2]  C. Michal,et al.  Strain Dependent Local Phase Transitions Observed during Controlled Supercontraction Reveal Mechanisms in Spider Silk , 2004 .

[3]  J. Kovoor,et al.  Morphologie et ultrastructure du canal des glandes ampullacées d'Araneus diadematus Clerck (Arachnida, Araneidae) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[4]  F Vollrath,et al.  The effect of spinning conditions on the mechanics of a spider's dragline silk , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[5]  F Vollrath,et al.  Spider silk fibre extrusion: combined wide- and small-angle X-ray microdiffraction experiments. , 2001, International journal of biological macromolecules.

[6]  F. Vollrath,et al.  Comparison of the spinning of selachian egg case ply sheets and orb web spider dragline filaments. , 2001, Biomacromolecules.

[7]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[8]  M. Knight,et al.  Beta transition and stress-induced phase separation in the spinning of spider dragline silk. , 2000, International journal of biological macromolecules.

[9]  Z. Shao,et al.  Analysis of spider silk in native and supercontracted states using Raman spectroscopy , 1999 .

[10]  Fritz Vollrath,et al.  Liquid crystals and flow elongation in a spider's silk production line , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  Z. Shao,et al.  The effect of solvents on the contraction and mechanical properties of spider silk , 1999 .

[12]  G. Ji,et al.  Molecular chain orientation in supercontracted and re-extended spider silk. , 1999, International journal of biological macromolecules.

[13]  Fritz Vollrath,et al.  Silk production in a spider involves acid bath treatment , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  P. Yager,et al.  Comparative Structural Characterization of Naturally- and Synthetically-Spun Fibers of Bombyx mori Fibroin , 1998 .

[15]  L W Jelinski,et al.  Molecular Orientation and Two-Component Nature of the Crystalline Fraction of Spider Dragline Silk , 1996, Science.

[16]  P. Yager,et al.  Structural investigation of (Ad II)26 fiber, a novel bioengineered material based on a viral spike protein , 1994 .

[17]  M. Townley,et al.  Selected aspects of spinning apparatus development in Araneus cavaticus (Araneae, Araneidae) , 1991, Journal of morphology.

[18]  R. E. Fornes,et al.  Molecular orientation of spider silks in the natural and supercontracted states , 1983 .

[19]  Robert W. Work,et al.  Dimensions, Birefringences, and Force-Elongation Behavior of Major and Minor Ampullate Silk Fibers from Orb-Web-Spinning Spiders—The Effects of Wetting on these Properties , 1977 .

[20]  Fred W. Billmeyer,et al.  Textbook Of Polymer Science , 1971 .