Inference of field‐scale fracture transmissivities in crystalline rock using flow log measurements

Inference of field-scale fracture transmissivities in crystalline rock using flow log measurements

[1]  O. Bour,et al.  Equivalent mean flow models for fractured aquifers: Insights from a pumping tests scaling interpretation , 2004 .

[2]  Application of multirate flowing fluid electric conductivity logging method to well DH‐2, Tono Site, Japan , 2004 .

[3]  N. Kuiper Tests concerning random points on a circle , 1960 .

[4]  Jean-Raynald de Dreuzy,et al.  Hydraulic properties of two‐dimensional random fracture networks following a power law length distribution: 1. Effective connectivity , 2001 .

[5]  N Oreskes,et al.  Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.

[6]  Auli Niemi,et al.  Hydraulic characterization and upscaling of fracture networks based on multiple‐scale well test data , 2000 .

[7]  Harald Klammler,et al.  A direct passive method for measuring water and contaminant fluxes in porous media. , 2004, Journal of contaminant hydrology.

[8]  Yonghong Hao,et al.  Hydraulic Tomography for Detecting Fracture Zone Connectivity , 2008, Ground water.

[9]  Björn Dverstorp,et al.  Conditional simulations of fluid flow in three-dimensional networks of discrete fractures , 1987 .

[10]  S. P. Neuman,et al.  Use of variable-scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near Oracle, Arizona , 1988 .

[11]  Y. Rubin Applied Stochastic Hydrogeology , 2003 .

[12]  N. Odling,et al.  Scaling of fracture systems in geological media , 2001 .

[13]  Vladimir Cvetkovic,et al.  Final report of the TRUE Block Scale project 3. Modelling of flow and transport , 2002 .

[14]  Emmanuel Ledoux,et al.  Modeling fracture flow with a stochastic discrete fracture network: Calibration and validation: 2. The transport model , 1990 .

[15]  S. Ingebritsen,et al.  Permeability of the continental crust: Implications of geothermal data and metamorphic systems , 1999 .

[16]  Daniel M. Tartakovsky,et al.  Type curve interpretation of late‐time pumping test data in randomly heterogeneous aquifers , 2007 .

[17]  C. Renshaw Estimation of fracture zone geometry from steady-state hydraulic head data using iterative sequential cokriging , 1996 .

[18]  S. P. Neuman Relationship between juxtaposed, overlapping, and fractal representations of multimodal spatial variability , 2003 .

[19]  Frederick L. Paillet,et al.  Integrated borehole logging methods for wellhead protection applications , 1996 .

[20]  Scott L. Painter,et al.  Stochastic simulation of radionuclide migration in discretely fractured rock near the Äspö Hard Rock Laboratory , 2004 .

[21]  Alberto Guadagnini,et al.  Type‐curve estimation of statistical heterogeneity , 2004 .

[22]  Björn Dverstorp,et al.  Discrete fracture network interpretation of field tracer migration in sparsely fractured rock , 1992 .

[23]  Andrew V. Wolfsberg,et al.  Rock Fractures and Fluid Flow: Contemporary Understanding and Applications , 1997 .

[24]  K. Hatfield,et al.  Concepts for measuring horizontal groundwater flow directions using the passive flux meter , 2007 .

[25]  J. Barker A generalized radial flow model for hydraulic tests in fractured rock , 1988 .

[26]  A. Kolmogorov On the Empirical Determination of a Distribution Function , 1992 .

[27]  Peter Hufschmied,et al.  Determination of Fracture Inflow Parameters With a Borehole Fluid Conductivity Logging Method , 1990 .

[28]  K. Blanckaert,et al.  Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends , 2010 .

[29]  G. Marsily,et al.  Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model , 1990 .

[30]  Jan-Olof Selroos,et al.  Comparison of alternative modelling approaches for groundwater flow in fractured rock , 2002 .

[31]  S. P. Neuman,et al.  Trends, prospects and challenges in quantifying flow and transport through fractured rocks , 2005 .

[32]  V. Cvetkovic,et al.  Transport and retention from single to multiple fractures in crystalline rock at Äspö (Sweden): 2. Fracture network simulations and generic retention model , 2010 .

[33]  S. P. Neuman Multiscale relationships between fracture length, aperture, density and permeability , 2008 .

[34]  Björn Dverstorp,et al.  Application of the discrete fracture network concept with field data: Possibilities of model calibration and validation , 1989 .

[35]  TRUE Block Scale Continuation Project: Final Report , 2007 .

[36]  Meakin,et al.  Scaling Relations for the Lengths and Widths of Fractures. , 1996, Physical review letters.

[37]  Chuen Hon Arthur Cheng,et al.  Characterization of Fracture Permeability with High‐Resolution Vertical Flow Measurements During Borehole Pumping , 1987 .

[38]  S. P. Neuman,et al.  Stochastic continuum representation of fractured rock permeability as an alternative to the REV and fracture network concepts , 1988 .

[39]  Hiromitsu Saegusa,et al.  Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan , 2009 .

[40]  W. Illman Analysis of permeability scaling within single boreholes , 2004 .

[41]  J. Bear Hydraulics of Groundwater , 1979 .

[42]  Christine Doughty,et al.  Multirate flowing fluid electric conductivity logging method: MULTIRATE FLOWING FEC LOGGING METHOD , 2003 .

[43]  J. J. Gómez-Hernández,et al.  3D inverse modelling of groundwater flow at a fractured site using a stochastic continuum model with multiple statistical populations , 2002 .