A Hopf algebra for counting cycles
暂无分享,去创建一个
[1] Russell Merris,et al. Single-hook characters and hamiltonian circuits ∗ , 1983 .
[2] Gordon G. Cash,et al. The number of n-cycles in a graph , 2007, Appl. Math. Comput..
[3] Christian Choffrut,et al. Determinants and Möbius functions in trace monoids , 1999, Discret. Math..
[4] Donald B. Johnson,et al. Finding All the Elementary Circuits of a Directed Graph , 1975, SIAM J. Comput..
[5] William R. Schmitt,et al. Antipodes and incidence coalgebras , 1987, J. Comb. Theory, Ser. A.
[6] Noga Alon,et al. Finding and counting given length cycles , 1997, Algorithmica.
[7] Q. Wu,et al. S. Montgomery, Hopf Algebras and their Actions on Rings, CBMS Regional Conference Series in Mathematics, 82, Providence, RI, 1993. , 2003 .
[8] Thibault Espinasse,et al. Relations Between Connected and Self-Avoiding Hikes in Labelled Complete Digraphs , 2016, Graphs and Combinatorics.
[9] G. Rota. On the Foundations of Combinatorial Theory , 2009 .
[10] Andreas Björklund. Determinant Sums for Undirected Hamiltonicity , 2014, SIAM J. Comput..
[11] N. Madras,et al. THE SELF-AVOIDING WALK , 2006 .
[12] Wilhelm von Waldenfels,et al. Zur Charakterisierung Liescher Elemente in freien Algebren , 1966 .
[13] William Schmitt,et al. Incidence Hopf algebras , 1994 .
[14] H. Duminil-Copin,et al. The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt2}$ , 2010, 1007.0575.
[15] Christophe Reutenauer,et al. Higher Lie Idempotents , 1999 .
[16] René Schott,et al. Complexity of counting cycles using zeons , 2011, Comput. Math. Appl..
[17] N. P. Khomenko,et al. Identifying certain types of parts of a graph and computing their number , 1972 .
[18] Richard M. Karp,et al. Dynamic programming meets the principle of inclusion and exclusion , 1982, Oper. Res. Lett..
[19] William Schmitt. Hopf Algebras and Identities in Free Partially Commutative Monoids , 1990, Theor. Comput. Sci..
[20] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[21] Pierre Cartier,et al. Problemes combinatoires de commutation et rearrangements , 1969 .
[22] John Milnor,et al. On the Structure of Hopf Algebras , 1965 .
[23] Paul Rochet,et al. Algebraic Combinatorics on Trace Monoids: Extending Number Theory to Walks on Graphs , 2016, SIAM J. Discret. Math..
[24] F. Patras,et al. Logarithmic derivatives and generalized Dynkin operators , 2012, 1206.4990.
[25] Volker Diekert. Transitive Orientations, Möbius Functions, and Complete Semi-Thue Systems for Free Partially Commutative Monoids , 1988, ICALP.
[26] Eric T. Bax,et al. Inclusion and Exclusion Algorithm for the Hamiltonian Path Problem , 1993, Inf. Process. Lett..
[27] Russell Merris. Immanantal invariants of graphs , 2005 .
[28] Christophe Reutenauer,et al. On Dynkin and Klyachko Idempotents in Graded Bialgebras , 2002, Adv. Appl. Math..
[29] Joel Franklin,et al. A Finite-Difference Sieve to Count Paths and Cycles by Length , 1996, Inf. Process. Lett..
[30] M. Lapidus,et al. Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot , 2004 .
[31] Victor Reiner,et al. Hopf Algebras in Combinatorics , 2014, 1409.8356.