Informatik 3 / 2005 Domain Decomposition for Nonlinear Problems : A Control-Theoretic Approach

We investigate the feasibility of a recent control-theoretic approach to domain decomposition for a class of nonlinear variational image processing problems. Like substructuring methods for solving in parallel linear (systems of) partial differential equations, the approach utilizes non-overlapping subdomains. Processor communication is therefore restricted to lower-dimensional interfaces. The approach is particularly suited for implementations on PC clusters, but also for on-chip parallelization on multi-core processors.

[1]  J. Mixter Fast , 2012 .

[2]  Timo Kohlberger,et al.  Domain decomposition for variational optical-flow computation , 2005, IEEE Transactions on Image Processing.

[3]  Timo Kohlberger,et al.  Parallel Variational Motion Estimation by Domain Decomposition and Cluster Computing , 2004, ECCV.

[4]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[5]  S. Lui On monotone iteration and Schwarz methods for nonlinear parabolic PDEs , 2003 .

[6]  Timo Kohlberger,et al.  Domain Decomposition for Parallel Variational Optical Flow Computation , 2003, DAGM-Symposium.

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  Christoph Schnörr,et al.  Globally convergent iterative numerical schemes for nonlinear variational image smoothing and segmentation on a multiprocessor machine , 2001, IEEE Trans. Image Process..

[9]  K. Atkinson,et al.  Theoretical Numerical Analysis , 2001 .

[10]  Max D. Gunzburger,et al.  An Optimization-Based Domain Decomposition Method for the Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[11]  Janet Peterson,et al.  An optimization based domain decomposition method for partial differential equations , 1999 .

[12]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[13]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[14]  D. Dobson,et al.  Convergence of an Iterative Method for Total Variation Denoising , 1997 .

[15]  H. Lee Optimization Based Domain Decomposition Methods for Linear and Nonlinear Problems , 1997 .

[16]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[17]  Gene H. Golub,et al.  A Nonlinear primal dual method for TV-based image restoration , 1996 .

[18]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[19]  Raymond H. Chan,et al.  Continuation method for total variation denoising problems , 1995, Optics & Photonics.

[20]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[21]  Stanley Osher,et al.  Total variation based image restoration with free local constraints , 1994, Proceedings of 1st International Conference on Image Processing.

[22]  Max Gunzburger,et al.  Analysis, approximation, and computation of a coupled solid/fluid temperature control problem , 1994 .

[23]  Xiao-Chuan Cai,et al.  Domain Decomposition Methods for Monotone Nonlinear Elliptic Problems , 1994 .

[24]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[25]  Lori Badea On the Schwarz alternating method with more than two subdomains for nonlinear monotone problems , 1991 .

[26]  W. Ziemer Weakly differentiable functions , 1989 .

[27]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[28]  Hans Rudolf Schwarz,et al.  Methode der finiten Elemente , 1984 .

[29]  J. Aubin Approximation of Elliptic Boundary-Value Problems , 1980 .

[30]  Jindřich Nečas,et al.  Kačanov - Galerkin method and its application , 1974 .

[31]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[32]  Jozef Kačur,et al.  Convergence of a method for solving the magnetostatic field in nonlinear media , 1968 .