Learning Efficient Random Maximum A-Posteriori Predictors with Non-Decomposable Loss Functions
暂无分享,去创建一个
[1] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[2] David A. McAllester. Simplified PAC-Bayesian Margin Bounds , 2003, COLT.
[3] Leslie Ann Goldberg,et al. The Complexity of Ferromagnetic Ising with Local Fields , 2006, Combinatorics, Probability and Computing.
[4] Alexander M. Rush,et al. A Tutorial on Dual Decomposition and Lagrangian Relaxation for Inference in Natural Language Processing , 2012, J. Artif. Intell. Res..
[5] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[6] Ryan P. Adams,et al. Randomized Optimum Models for Structured Prediction , 2012, AISTATS.
[7] Tommi S. Jaakkola,et al. On the Partition Function and Random Maximum A-Posteriori Perturbations , 2012, ICML.
[8] Patrick Pérez,et al. Interactive Image Segmentation Using an Adaptive GMMRF Model , 2004, ECCV.
[9] François Laviolette,et al. PAC-Bayesian learning of linear classifiers , 2009, ICML '09.
[10] John Shawe-Taylor,et al. PAC-Bayes & Margins , 2002, NIPS.
[11] O. Catoni. PAC-BAYESIAN SUPERVISED CLASSIFICATION: The Thermodynamics of Statistical Learning , 2007, 0712.0248.
[12] Tommi S. Jaakkola,et al. Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations , 2007, NIPS.
[13] George Papandreou,et al. Perturb-and-MAP random fields: Using discrete optimization to learn and sample from energy models , 2011, 2011 International Conference on Computer Vision.
[14] Matthias W. Seeger,et al. PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification , 2003, J. Mach. Learn. Res..
[15] Tommi S. Jaakkola,et al. Tightening LP Relaxations for MAP using Message Passing , 2008, UAI.
[16] Olga Veksler,et al. Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[17] Max Welling,et al. Herding dynamical weights to learn , 2009, ICML '09.
[18] Anand D. Sarwate,et al. On Measure Concentration of Random Maximum A-Posteriori Perturbations , 2013, ICML.
[19] Derek Hoiem,et al. Learning CRFs Using Graph Cuts , 2008, ECCV.
[20] Tamir Hazan,et al. Direct Loss Minimization for Structured Prediction , 2010, NIPS.
[21] Andreas Maurer,et al. A Note on the PAC Bayesian Theorem , 2004, ArXiv.
[22] Yevgeny Seldin. A PAC-Bayesian Approach to Structure Learning , 2009 .
[23] Tamir Hazan,et al. PAC-Bayesian approach for minimization of phoneme error rate , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[24] Ben Taskar,et al. Max-Margin Markov Networks , 2003, NIPS.
[25] Richard S. Zemel,et al. Structured Output Learning with High Order Loss Functions , 2012, AISTATS.
[26] Subhransu Maji,et al. On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations , 2013, NIPS.