A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins

Integrins, a diverse class of heterodimeric cell surface receptors, are key regulators of cell structure and behaviour, affecting cell morphology, proliferation, survival and differentiation. Consequently, mutations in specific integrins, or their deregulated expression, are associated with a variety of diseases. In the last decades, many integrin-specific ligands have been developed and used for modulation of integrin function in medical as well as biophysical studies. The IC50-values reported for these ligands strongly vary and are measured using different cell-based and cell-free systems. A systematic comparison of these values is of high importance for selecting the optimal ligands for given applications. In this study, we evaluate a wide range of ligands for their binding affinity towards the RGD-binding integrins αvβ3, αvβ5, αvβ6, αvβ8, α5β1, αIIbβ3, using homogenous ELISA-like solid phase binding assay.

[1]  Horst Kessler,et al.  RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. , 2003, Biomaterials.

[2]  R. Burgkart,et al.  A molecular toolkit for the functionalization of titanium-based biomaterials that selectively control integrin-mediated cell adhesion. , 2013, Chemistry.

[3]  Noritaka Nishida,et al.  Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. , 2008, Molecular cell.

[4]  Horst Kessler,et al.  Spatial Screening for the Identification of the Bioactive Conformation of Integrin Ligands , 2006 .

[5]  P. Weinreb,et al.  Structure-Function Analysis of Arg-Gly-Asp Helix Motifs in αvβ6 Integrin Ligands* , 2007, Journal of Biological Chemistry.

[6]  Matthias Glaser,et al.  Phase I Trial of the Positron-Emitting Arg-Gly-Asp (RGD) Peptide Radioligand 18F-AH111585 in Breast Cancer Patients , 2008, Journal of Nuclear Medicine.

[7]  T. Hoffman,et al.  A heterodimeric [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2] αvβ3/GRPr-targeting antagonist radiotracer for PET imaging of prostate tumors. , 2014, Nuclear medicine and biology.

[8]  J. Takagi,et al.  The RGD motif in fibronectin is essential for development but dispensable for fibril assembly , 2007, The Journal of cell biology.

[9]  Xiaojing Ye,et al.  The integrins , 2007, Genome Biology.

[10]  E. Novellino,et al.  Breaking the dogma of the metal-coordinating carboxylate group in integrin ligands: introducing hydroxamic acids to the MIDAS to tune potency and selectivity. , 2009, Angewandte Chemie.

[11]  H. Kessler,et al.  Integrin modulators: a patent review , 2013, Expert opinion on therapeutic patents.

[12]  A. Joachimiak,et al.  CRYSTAL STRUCTURE OF THE EXTRACELLULAR SEGMENT OF INTEGRIN ALPHAVBETA3 , 2001 .

[13]  L. Patterson,et al.  Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists. , 2014, Journal of medicinal chemistry.

[14]  C. Curti,et al.  Targeting αvβ3 Integrin: Design and Applications of Mono- and Multifunctional RGD-Based Peptides and Semipeptides , 2010 .

[15]  S. Dedhar,et al.  A cell surface receptor complex for collagen type I recognizes the Arg- Gly-Asp sequence , 1987, The Journal of cell biology.

[16]  David A. Cheresh,et al.  Integrins in cancer: biological implications and therapeutic opportunities , 2010, Nature Reviews Cancer.

[17]  B. Geiger,et al.  Environmental sensing through focal adhesions , 2009, Nature Reviews Molecular Cell Biology.

[18]  R. Timpl,et al.  Arg‐Gly‐Asp constrained within cyclic pentapoptides Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1 , 1991, FEBS letters.

[19]  R J Lynch,et al.  Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. , 1992, Journal of medicinal chemistry.

[20]  R. Timpl,et al.  Comparison of Disintegrins with Limited Variation in the RGD Loop in Their Binding to Purified Integrins αIIbβ3, αVβ3 and α5β1 and in Cell Adhesion Inhibition , 1994 .

[21]  E Ruoslahti,et al.  Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp--specific adhesion receptors. , 1986, Science.

[22]  Alexandra Naba,et al.  Overview of the matrisome--an inventory of extracellular matrix constituents and functions. , 2012, Cold Spring Harbor perspectives in biology.

[23]  H. Kessler,et al.  Benefits of NOPO as chelator in gallium-68 peptides, exemplified by preclinical characterization of (68)Ga-NOPO-c(RGDfK). , 2014, Molecular pharmaceutics.

[24]  E. Fama,et al.  Migration , 2007 .

[25]  David C. Smith,et al.  Phase II study of Cilengitide (EMD 121974, NSC 707544) in patients with non-metastatic castration resistant prostate cancer, NCI-6735. A study by the DOD/PCF prostate cancer clinical trials consortium , 2012, Investigational New Drugs.

[26]  Timothy A. Springer,et al.  Therapeutic antagonists and conformational regulation of integrin function , 2003, Nature Reviews Drug Discovery.

[27]  L. Resta,et al.  Cilengitide restrains the osteoclast‐like bone resorbing activity of myeloma plasma cells , 2016, British journal of haematology.

[28]  L. Ellis,et al.  Inhibition of integrin α5β1 function with a small peptide (ATN‐161) plus continuous 5‐FU infusion reduces colorectal liver metastases and improves survival in mice , 2003, International journal of cancer.

[29]  S. Goodman,et al.  Nanomolar small molecule inhibitors for alphav(beta)6, alphav(beta)5, and alphav(beta)3 integrins. , 2002, Journal of medicinal chemistry.

[30]  Joachim P Spatz,et al.  Activation of integrin function by nanopatterned adhesive interfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  D. Boturyn,et al.  Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. , 2007, Anti-cancer agents in medicinal chemistry.

[32]  H. Kessler,et al.  Probing Integrin Selectivity: Rational Design of Highly Active and Selective Ligands for the α5β1 and αvβ3 Integrin Receptor , 2007 .

[33]  D. Cheresh,et al.  Integrin α v β 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels , 1994, Cell.

[34]  H. Kessler,et al.  Rationales Design von hoch aktiven und selektiven Liganden für α5β1‐ und αvβ3‐Integrine , 2007 .

[35]  Erkki Ruoslahti,et al.  Nanoparticles coated with the tumor-penetrating peptide iRGD reduce experimental breast cancer metastasis in the brain , 2015, Journal of Molecular Medicine.

[36]  R. Kontermann,et al.  Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells. , 2004, Protein engineering, design & selection : PEDS.

[37]  R J Gould,et al.  Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. , 1988, The Journal of biological chemistry.

[38]  Erkki Ruoslahti,et al.  Phage Libraries Displaying Cyclic Peptides with Different Ring Sizes: Ligand Specificities of the RGD-Directed Integrins , 1995, Bio/Technology.

[39]  Shun-dong Ji,et al.  Comparison of biological properties of (111)In-labeled dimeric cyclic RGD peptides. , 2015, Nuclear medicine and biology.

[40]  H. Kessler,et al.  Rational Design of Highly Active and Selective Ligands for the α5β1 Integrin Receptor , 2008, Chembiochem : a European journal of chemical biology.

[41]  E Ruoslahti,et al.  Solution structures and integrin binding activities of an RGD peptide with two isomers. , 2001, Biochemistry.

[42]  Marian Brennan,et al.  Integrins as therapeutic targets: lessons and opportunities , 2010, Nature Reviews Drug Discovery.

[43]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 , 2001, Science.

[44]  J. Kitchin,et al.  Orally active non-peptide fibrinogen receptor (GpIIb/IIIa) antagonists: identification of 4-[4-[4-(aminoiminomethyl)phenyl]-1-piperazinyl]-1-piperidineacetic acid as a long-acting, broad-spectrum antithrombotic agent. , 1994, Journal of medicinal chemistry.

[45]  G. Ferro-Flores,et al.  Preparation and preclinical evaluation of (66)Ga-DOTA-E(c(RGDfK))2 as a potential theranostic radiopharmaceutical. , 2015, Nuclear medicine and biology.

[46]  J. Laurence,et al.  The role of thiols and disulfides in protein chemical and physical stability , 2013 .

[47]  S. Goodman,et al.  Definition of an unexpected ligand recognition motif for alphav beta6 integrin. , 1999, The Journal of biological chemistry.

[48]  Y. Sugita,et al.  Crystal structure of α5β1 integrin ectodomain: Atomic details of the fibronectin receptor , 2012, The Journal of cell biology.

[49]  Li Zhang,et al.  Ligand Binding to Integrins* , 2000, The Journal of Biological Chemistry.

[50]  David A. Cheresh,et al.  Integrins in cancer: biological implications and therapeutic opportunities , 2010, Nature Reviews Cancer.

[51]  David A. Cheresh,et al.  Definition of Two Angiogenic Pathways by Distinct αv Integrins , 1995, Science.

[52]  E. Novellino,et al.  Ligand Binding Analysis for Human α5β1 Integrin: Strategies for Designing New α5β1 Integrin Antagonists , 2005 .

[53]  J Engel,et al.  Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V beta 3, and alpha 5 beta 1 integrins. , 1994, The Journal of biological chemistry.

[54]  H. Kessler,et al.  Targeting RGD recognizing integrins: drug development, biomaterial research, tumor imaging and targeting. , 2006, Current pharmaceutical design.

[55]  H. Kessler,et al.  αvβ3- or α5β1-Integrin-Selective Peptidomimetics for Surface Coating. , 2016, Angewandte Chemie.

[56]  S. Goodman,et al.  Definition of an Unexpected Ligand Recognition Motif for αvβ6 Integrin* , 1999, The Journal of Biological Chemistry.

[57]  H. Kessler,et al.  Ligands for mapping alphavbeta3-integrin expression in vivo. , 2009, Accounts of chemical research.

[58]  Horst Kessler,et al.  Nanomolar Small Molecule Inhibitors for αvβ6, αvβ5, and αvβ3 Integrins , 2002 .

[59]  R. Longhi,et al.  Spontaneous Formation of L-Isoaspartate and Gain of Function in Fibronectin* , 2006, Journal of Biological Chemistry.

[60]  H. Kessler,et al.  Tumor Targeting via Integrin Ligands , 2013, Front. Oncol..

[61]  B. Nies,et al.  Selective RGD-Mediated Adhesion of Osteoblasts at Surfaces of Implants. , 1999, Angewandte Chemie.

[62]  E. Novellino,et al.  Stable Peptides Instead of Stapled Peptides: Highly Potent αvβ6-Selective Integrin Ligands. , 2016, Angewandte Chemie.

[63]  D. Boettiger,et al.  The glycophorin A transmembrane sequence within integrin αvβ3 creates a non-signaling integrin with low basal affinity that is strongly adhesive under force. , 2013, Journal of molecular biology.

[64]  E. Novellino,et al.  Conformational control of integrin-subtype selectivity in isoDGR peptide motifs: a biological switch. , 2010, Angewandte Chemie.

[65]  C. Curti,et al.  Targeting alphavbeta3 integrin: design and applications of mono- and multifunctional RGD-based peptides and semipeptides. , 2010, Current medicinal chemistry.

[66]  A. Cuthbertson,et al.  NC-100717: a versatile RGD peptide scaffold for angiogenesis imaging. , 2006, Bioorganic & medicinal chemistry letters.

[67]  Gerhard Müller,et al.  Pharmacophore refinement of gpIIb/IIIa antagonists based on comparative studies of antiadhesive cyclic and acyclic RGD peptides , 1994, J. Comput. Aided Mol. Des..

[68]  K. Ley,et al.  Integrin-based therapeutics : biological basis , clinical use and new drugs , 2016 .

[69]  H. Kessler,et al.  Interface Immobilization Chemistry of cRGD-based Peptides Regulates Integrin Mediated Cell Adhesion , 2013, Advanced functional materials.

[70]  M. Schwaiger,et al.  Selective imaging of the angiogenic relevant integrins α5β1 and αvβ3. , 2013, Angewandte Chemie.

[71]  A. Sochanik,et al.  Antitumor effect of RGD-4C-GG-D(KLAKLAK)2 peptide in mouse B16(F10) melanoma model. , 2006, Acta biochimica Polonica.

[72]  Arnoud Sonnenberg,et al.  Integrin–TGF‐β crosstalk in fibrosis, cancer and wound healing , 2010, EMBO reports.

[73]  P. Gmeiner,et al.  3,4,6-Tri-O-acetyl-2-deoxy-2-[18F]fluoroglucopyranosyl phenylthiosulfonate: a thiol-reactive agent for the chemoselective 18F-glycosylation of peptides. , 2007, Bioconjugate chemistry.

[74]  Erkki Ruoslahti,et al.  Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule , 1984, Nature.

[75]  U. Reimer,et al.  Design and Synthesis of a New Class of Selective Integrin α5β1 Antagonists , 2007 .

[76]  Horst Kessler,et al.  Conformation and Biological Activity of Cyclic Peptides , 1982 .

[77]  Valerie M. Weaver,et al.  The extracellular matrix at a glance , 2010, Journal of Cell Science.

[78]  Horst Kessler,et al.  Receptor-bound conformation of cilengitide better represented by its solution-state structure than the solid-state structure. , 2014, Chemistry.

[79]  S. Goodman,et al.  N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists. , 1999, Journal of medicinal chemistry.

[80]  R L Juliano,et al.  Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. , 2002, Annual review of pharmacology and toxicology.

[81]  T. Mikkelsen,et al.  Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: results of the open-label, controlled, randomized phase II CORE study. , 2015, Neuro-oncology.

[82]  G. Davis,et al.  RGDN peptide interaction with endothelial alpha5beta1 integrin causes sustained endothelin-dependent vasoconstriction of rat skeletal muscle arterioles. , 1997, The Journal of clinical investigation.

[83]  E. Novellino,et al.  Pharmacophoric modifications lead to superpotent αvβ3 integrin ligands with suppressed α5β1 activity. , 2014, Journal of medicinal chemistry.

[84]  E. Novellino,et al.  Increasing αvβ3 selectivity of the anti-angiogenic drug cilengitide by N-methylation. , 2011, Angewandte Chemie.

[85]  U. Reimer,et al.  Design and synthesis of a new class of selective integrin alpha5beta1 antagonists. , 2007, Journal of medicinal chemistry.

[86]  T. Williams,et al.  Solution stability of linear vs. cyclic RGD peptides. , 1999, The journal of peptide research : official journal of the American Peptide Society.

[87]  I. Charo,et al.  Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. , 1993, The Journal of biological chemistry.

[88]  Horst Kessler,et al.  Cilengitide: The First Anti-Angiogenic Small Molecule Drug Candidate. Design, Synthesis and Clinical Evaluation , 2010, Anti-cancer agents in medicinal chemistry.

[89]  J. Laurence,et al.  The role of thiols and disulfides on protein stability. , 2009, Current protein & peptide science.

[90]  R. Hynes,et al.  Endothelial α5 and αv integrins cooperate in remodeling of the vasculature during development , 2010, Development.

[91]  Horst Kessler,et al.  Multiple N-methylation by a designed approach enhances receptor selectivity. , 2007, Journal of medicinal chemistry.

[92]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 in Complex with an Arg-Gly-Asp Ligand , 2002, Science.

[93]  H. Kessler,et al.  Small Cause, Great Impact: Modification of the Guanidine Group in the RGD Motif Controls Integrin Subtype Selectivity. , 2016, Angewandte Chemie.

[94]  H. Kessler,et al.  Ligands for Mapping a v 3 -Integrin Expression in Vivo , 2009 .

[95]  B. Nies,et al.  Surface Coating with Cyclic RGD Peptides Stimulates Osteoblast Adhesion and Proliferation as well as Bone Formation , 2000, Chembiochem : a European journal of chemical biology.

[96]  S. Goodman,et al.  Integrins as therapeutic targets. , 2012, Trends in pharmacological sciences.

[97]  H. Kessler,et al.  Functionalizing αvβ3- or α5β1-selective integrin antagonists for surface coating: a method to discriminate integrin subtypes in vitro. , 2013, Angewandte Chemie.

[98]  A. Kovar,et al.  Metabolism and disposition of the αv‐integrin ß3/ß5 receptor antagonist cilengitide, a cyclic polypeptide, in humans , 2015, Journal of clinical pharmacology.

[99]  E. Novellino,et al.  Biselectivity of isoDGR peptides for fibronectin binding integrin subtypes α5β1 and αvβ6: conformational control through flanking amino acids. , 2013, Journal of medicinal chemistry.

[100]  A. Davenport,et al.  Radioligand binding assays and their analysis. , 2012, Methods in molecular biology.

[101]  D. Cheresh,et al.  Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. , 1994, Cell.

[102]  Horst Kessler,et al.  Noninvasive Visualization of the Activated αvβ3 Integrin in Cancer Patients by Positron Emission Tomography and [18F]Galacto-RGD , 2005, PLoS medicine.

[103]  M. Humphries,et al.  Cell biology: Adhesion articulated , 2004, Nature.

[104]  Sergey V. Plotnikov,et al.  Force Fluctuations within Focal Adhesions Mediate ECM-Rigidity Sensing to Guide Directed Cell Migration , 2012, Cell.

[105]  D. Cheresh,et al.  Definition of two angiogenic pathways by distinct alpha v integrins. , 1995, Science.

[106]  R. Netz,et al.  Influence of length and flexibility of spacers on the binding affinity of divalent ligands , 2015, Beilstein journal of organic chemistry.

[107]  K. Aldape,et al.  Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. , 2014, The Lancet. Oncology.

[108]  Horst Kessler,et al.  Stereoisomeric Peptide Libraries and Peptidomimetics for Designing Selective Inhibitors of the αvβ3 Integrin for a New Cancer Therapy , 1997 .

[109]  R. Kimura,et al.  PET Imaging of Integrin Positive Tumors Using 18F Labeled Knottin Peptides , 2011, Theranostics.

[110]  S. Mousa,et al.  Human αvβ3 Integrin Potency and Specificity of TA138 and Its DOTA Conjugated Form (89)Y-TA138 , 2005, Journal of cardiovascular pharmacology.

[111]  Horst Kessler,et al.  Docking studies on αvβ3 integrin ligands: Pharmacophore refinement and implications for drug design , 2003 .

[112]  S. Goodman,et al.  Structural and Functional Aspects of RGD-Containing Cyclic Pentapeptides as Highly Potent and Selective Integrin αVβ3 Antagonists , 1996 .