Discovery and translation of functional nucleic acids for clinically diagnosing infectious diseases: Opportunities and challenges

[1]  T. Weil,et al.  A Polyclonal Selex Aptamer Library Directly Allows Specific Labelling of the Human Gut Bacterium Blautia producta without Isolating Individual Aptamers , 2022, Molecules.

[2]  meilin shi,et al.  Aptamer-based biosensors for virus protein detection , 2022, TrAC Trends in Analytical Chemistry.

[3]  T. Weil,et al.  A Polyclonal Aptamer Library for the Specific Binding of the Gut Bacterium Roseburia intestinalis in Mixtures with Other Gut Microbiome Bacteria and Human Stool Samples , 2022, International journal of molecular sciences.

[4]  Longjiao Zhu,et al.  Progress and challenges in bacterial whole-cell-components Aptamer advanced screening and site identification , 2022, TrAC Trends in Analytical Chemistry.

[5]  R. Lal,et al.  Rapid self-test of unprocessed viruses of SARS-CoV-2 and its variants in saliva by portable wireless graphene biosensor , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Xiao-Yan Yang,et al.  Single-Nanoparticle Collision Electrochemistry Biosensor Based on an Electrocatalytic Strategy for Highly Sensitive and Specific Detection of H7N9 Avian Influenza Virus. , 2022, Analytical chemistry.

[7]  Yingfu Li,et al.  A DNA Barcode-Based Aptasensor Enables Rapid Testing of Porcine Epidemic Diarrhea Viruses in Swine Saliva Using Electrochemical Readout. , 2022, Angewandte Chemie.

[8]  Jingguang Wei,et al.  A Novel Sandwich ELASA Based on Aptamer for Detection of Largemouth Bass Virus (LMBV) , 2022, Viruses.

[9]  R. Corradini,et al.  A Folding-Based Electrochemical Aptasensor for the Single-Step Detection of the SARS-CoV-2 Spike Protein , 2022, ACS applied materials & interfaces.

[10]  Yingfu Li,et al.  Aptamers for SARS‐CoV‐2: Isolation, Characterization, and Diagnostic and Therapeutic Developments , 2022, Analysis & sensing.

[11]  Yingfu Li,et al.  DNAzyme-Immobilizing Microgel Magnetic Beads Enable Rapid, Specific, Culture-Free, and Wash-Free Electrochemical Quantification of Bacteria in Untreated Urine. , 2022, ACS sensors.

[12]  Qiumei Feng,et al.  Novel integrating polymethylene blue nanoparticles with dumbbell hybridization chain reaction for electrochemical detection of pathogenic bacteria. , 2022, Food chemistry.

[13]  Yingfu Li,et al.  A Universal DNA Aptamer that Recognizes Spike Proteins of Diverse SARS‐CoV‐2 Variants of Concern , 2022, Chemistry.

[14]  Yingfu Li,et al.  Aptamers from random sequence space: Accomplishments, gaps and future considerations. , 2022, Analytica chimica acta.

[15]  Wei Chen,et al.  Trigging Isothermal Circular Amplification-Based Tuning of Rigorous Fluorescence Quenching into Complete Restoration on a Multivalent Aptamer Probe Enables Ultrasensitive Detection of Salmonella. , 2021, Analytical chemistry.

[16]  E. Poveda,et al.  Aptamer Sandwich Assay for the Detection of SARS-CoV-2 Spike Protein Antigen , 2021, ACS omega.

[17]  Wenxian Zhang,et al.  Functional nucleic acids as modular components against SARS-CoV-2: From diagnosis to therapeutics , 2021, Biosensors and Bioelectronics.

[18]  Genxi Li,et al.  Aptamer-Functionalized Nanochannels for One-Step Detection of SARS-CoV-2 in Samples from COVID-19 Patients. , 2021, Analytical chemistry.

[19]  Yingfu Li,et al.  A Lateral Flow Test for Staphylococcus aureus in Nasal Mucus Using a New DNAzyme as the Recognition Element. , 2021, Angewandte Chemie.

[20]  Gorachand Dutta,et al.  Aptamer-based biosensors and their implications in COVID-19 diagnosis. , 2021, Analytical methods : advancing methods and applications.

[21]  Jiayu Wan,et al.  CRISPR/Cas12a and immuno-RCA based electrochemical biosensor for detecting pathogenic bacteria , 2021, Journal of Electroanalytical Chemistry.

[22]  M. K. Md Arshad,et al.  Aptasensing nucleocapsid protein on nanodiamond assembled gold interdigitated electrodes for impedimetric SARS-CoV-2 infectious disease assessment , 2021, Biosensors and Bioelectronics.

[23]  Lizeng Gao,et al.  Nanozymes: A clear definition with fuzzy edges , 2021 .

[24]  M. Lobo-Castañón,et al.  Aptamers against viruses: Selection strategies and bioanalytical applications , 2021 .

[25]  Yingfu Li,et al.  Functional Nucleic Acids for Pathogenic Bacteria Detection. , 2021, Accounts of chemical research.

[26]  M. Toimil-Molares,et al.  Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors , 2021, Science advances.

[27]  Matthew S. Miller,et al.  High‐Affinity Dimeric Aptamers Enable the Rapid Electrochemical Detection of Wild‐Type and B.1.1.7 SARS‐CoV‐2 in Unprocessed Saliva , 2021, Angewandte Chemie.

[28]  Andrea Idili,et al.  Rapid and Efficient Detection of the SARS-CoV-2 Spike Protein Using an Electrochemical Aptamer-Based Sensor , 2021, ACS sensors.

[29]  Wentao Xu,et al.  Aptamer-Functionalized DNA-Silver Nanocluster Nanofilm for Visual Detection and Elimination of Bacteria. , 2021, ACS applied materials & interfaces.

[30]  R. Goel,et al.  Complex target SELEX-based identification of DNA aptamers against Bungarus caeruleus venom for the detection of envenomation using a paper-based device. , 2021, Biosensors & bioelectronics.

[31]  T. Tang,et al.  Aptamers isolated against mosquito-borne pathogens , 2021, World Journal of Microbiology and Biotechnology.

[32]  Matthew S. Miller,et al.  Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library , 2021, Nucleic acids research.

[33]  E. McConnell,et al.  Biosensing with DNAzymes. , 2021, Chemical Society reviews.

[34]  H. Ulrich,et al.  Aptamer Applications in Emerging Viral Diseases , 2021, Pharmaceuticals.

[35]  Yingfu Li,et al.  Integrating programmable DNAzymes with electrical readout for rapid and culture-free bacterial detection using a handheld platform , 2021, Nature Chemistry.

[36]  R. Taheri,et al.  Electrochemical aptasensor for Escherichia coli O157:H7 bacteria detection using a nanocomposite of reduced graphene oxide, gold nanoparticles and polyvinyl alcohol. , 2021, Analytical methods : advancing methods and applications.

[37]  Jie Yang,et al.  Electrochemical Deposition of Cu Metal-Organic Framework Films for the Dual Analysis of Pathogens. , 2021, Analytical chemistry.

[38]  A. Anand,et al.  A novel G-quadruplex aptamer-based spike trimeric antigen test for the detection of SARS-CoV-2 , 2021, Molecular Therapy - Nucleic Acids.

[39]  Seong-Wook Lee,et al.  Aptamers for Anti-Viral Therapeutics and Diagnostics , 2021, International journal of molecular sciences.

[40]  A. Pramanik,et al.  Aptamer Conjugated Gold Nanostar-Based Distance-Dependent Nanoparticle Surface Energy Transfer Spectroscopy for Ultrasensitive Detection and Inactivation of Corona Virus , 2021, The journal of physical chemistry letters.

[41]  S. Faucher,et al.  Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens , 2021, Frontiers in Microbiology.

[42]  M. Khine,et al.  Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes. , 2021, Analytical methods : advancing methods and applications.

[43]  Lili Chen,et al.  Recent advances on aptamer-based biosensors for detection of pathogenic bacteria , 2021, World Journal of Microbiology and Biotechnology.

[44]  Yanling Song,et al.  Selection and applications of functional nucleic acids for infectious disease detection and prevention , 2021, Analytical and Bioanalytical Chemistry.

[45]  Lide Gu,et al.  Rapid Detection of Helicobacter pylori by the Naked Eye Using DNA Aptamers , 2021, ACS omega.

[46]  Nandi Zhou,et al.  Self-Assembled DNA Nanoflowers Triggered by a DNA Walker for Highly Sensitive Electrochemical Detection of Staphylococcus aureus. , 2021, ACS applied materials & interfaces.

[47]  E. McConnell,et al.  DNAzymes as key components of biosensing systems for the detection of biological targets. , 2021, Biosensors & bioelectronics.

[48]  Yingfu Li,et al.  A Highly Specific DNA Aptamer for RNase H2 from Clostridium difficile. , 2021, ACS applied materials & interfaces.

[49]  M. Ramya,et al.  Aptamer-based approaches for the detection of waterborne pathogens , 2021, International Microbiology.

[50]  E. McConnell,et al.  Selection and Characterization of an RNA-cleaving DNAzyme Specifically Activated by Legionella pneumophila. , 2020, Angewandte Chemie.

[51]  Lei He,et al.  A serological aptamer-assisted proximity ligation assay for COVID-19 diagnosis and seeking neutralizing aptamers , 2020, Chemical science.

[52]  I. White,et al.  A critical review of point-of-care diagnostic technologies to combat viral pandemics , 2020, Analytica Chimica Acta.

[53]  Wensen Liu,et al.  An electrochemical aptasensor based on cocoon-like DNA nanostructure signal amplification for the detection of Escherichia coli O157:H7. , 2020, The Analyst.

[54]  Priyanka Sabherwal,et al.  Biolayer interferometry-SELEX for Shiga toxin antigenic-peptide aptamers & detection via chitosan-WSe2 aptasensor. , 2020, Biosensors & bioelectronics.

[55]  Zhaofeng Luo,et al.  Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers. , 2020, Chemical communications.

[56]  Y. Ye,et al.  Size-Dependent Modulation of Polydopamine Nanosphere on Smart Nanoprobe for Detection of Pathogenic Bacteria at Single-Cell Level and Imaging-Guided Photothermal Bactericidal Activity. , 2020, ACS applied materials & interfaces.

[57]  Blake N. Johnson,et al.  Electrochemical biosensors for pathogen detection , 2020, Biosensors and Bioelectronics.

[58]  Yanling Song,et al.  Discovery of Aptamers Targeting the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein , 2020, Analytical chemistry.

[59]  Jiuxing Li,et al.  Circular Nucleic Acids: Discovery, Functions and Applications , 2020, Chembiochem : a European journal of chemical biology.

[60]  Yingfu Li,et al.  In Vitro Selection of A DNA Aptamer Targeting Degraded Protein Fragments for Biosensing. , 2020, Angewandte Chemie.

[61]  Jae-Hyuk Ahn,et al.  Aptamer-based field-effect transistor for detection of avian influenza virus in chicken serum. , 2020, Analytical chemistry.

[62]  E. McConnell,et al.  Selection and applications of synthetic functional DNAs for bacterial detection , 2020 .

[63]  Gwo-Bin Lee,et al.  A structure-free digital microfluidic platform for detection of influenza a virus by using magnetic beads and electromagnetic forces. , 2020, Lab on a chip.

[64]  Yingfu Li,et al.  Advances in functional nucleic acid based paper sensors. , 2020, Journal of materials chemistry. B.

[65]  Inae Lee,et al.  A self-calibrating electrochemical aptasensing platform: Correcting external interference errors for the reliable and stable detection of avian influenza viruses. , 2020, Biosensors & bioelectronics.

[66]  Juewen Liu,et al.  Catalytic Nucleic Acids: Biochemistry, Chemical Biology, Biosensors, and Nanotechnology , 2020, iScience.

[67]  E. McConnell,et al.  Biosensors Made of Synthetic Functional Nucleic Acids Towards Better Human Health. , 2020, Analytical chemistry.

[68]  Mahmoud Labib,et al.  Detection of pathogenic bacteria via nanomaterials-modified aptasensors. , 2019, Biosensors & bioelectronics.

[69]  Min-Gon Kim,et al.  Development of DNA Aptamers against the Nucleocapsid Protein of Severe Fever with Thrombocytopenia Syndrome Virus for Diagnostic Application: Catalytic Signal Amplification using Replication Protein A-Conjugated Liposomes. , 2019, Analytical chemistry.

[70]  G. Xie,et al.  A novel enzyme-free electrochemical biosensor for rapid detection of Pseudomonas aeruginosa based on high catalytic Cu-ZrMOF and conductive Super P. , 2019, Biosensors & bioelectronics.

[71]  Qingjiang Wang,et al.  Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene , 2019, Microchimica Acta.

[72]  Kui Zou,et al.  Stochastic DNA Walker in Droplets for Super-Multiplex Bacteria Phenotype Detection. , 2019, Angewandte Chemie.

[73]  Lihua Wang,et al.  Engineering DNA-Nanozyme Interfaces for Rapid Detection of Dental Bacteria. , 2019, ACS applied materials & interfaces.

[74]  M. Ali,et al.  A DNAzyme-Based Colorimetric Paper Sensor for Helicobacter pylori. , 2019, Angewandte Chemie.

[75]  Q. Wei,et al.  An Aptamer-Based Fluorescent Sensor Array for Rapid Detection of Cyanotoxins on a Smartphone. , 2019, Analytical chemistry.

[76]  Yingfu Li,et al.  In Vitro Selection of Circular DNA Aptamers for Biosensing Applications. , 2019, Angewandte Chemie.

[77]  M. Gu,et al.  Specific detection of avian influenza H5N2 whole virus particles on lateral flow strips using a pair of sandwich-type aptamers. , 2019, Biosensors & bioelectronics.

[78]  Shi-jia Ding,et al.  An enzyme-free electrochemiluminesce aptasensor for the rapid detection of Staphylococcus aureus by the quenching effect of MoS2-PtNPs-vancomycin to S2O82−/O2 system , 2019, Sensors and Actuators B: Chemical.

[79]  Juewen Liu,et al.  Selection of DNAzymes for Sensing Aquatic Bacteria: Vibrio Anguillarum. , 2019, Analytical chemistry.

[80]  Xiaohong Shi,et al.  A new aptamer/polyadenylated DNA interdigitated gold electrode piezoelectric sensor for rapid detection of Pseudomonas aeruginosa. , 2019, Biosensors & bioelectronics.

[81]  Y. Takamura,et al.  Competitive non-SELEX for the selective and rapid enrichment of DNA aptamers and its use in electrochemical aptasensor , 2019, Scientific Reports.

[82]  Weian Zhao,et al.  A Simple DNAzyme‐Based Fluorescent Assay for Klebsiella pneumoniae , 2019, Chembiochem : a European journal of chemical biology.

[83]  F. He,et al.  Mycobacterium tuberculosis strain H37Rv Electrochemical Sensor Mediated by Aptamer and AuNPs-DNA. , 2019, ACS sensors.

[84]  P. Goswami,et al.  Dye Coupled Aptamer-Captured Enzyme Catalyzed Reaction for Detection of Pan Malaria and P. falciparum Species in Laboratory Settings and Instrument-Free Paper-Based Platform. , 2019, Analytical chemistry.

[85]  Jongyoon Han,et al.  Femtomolar Detection of Lipopolysaccharide in Injectables and Serum Samples Using Aptamer-Coupled Reduced Graphene Oxide in a Continuous Injection-Electrostacking Biochip. , 2019, Analytical chemistry.

[86]  Royston Goodacre,et al.  Ultrasensitive Colorimetric Detection of Murine Norovirus Using NanoZyme Aptasensor. , 2019, Analytical chemistry.

[87]  Tarun Kumar Sharma,et al.  Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme , 2019, Analytical and Bioanalytical Chemistry.

[88]  P. Estrela,et al.  Electrochemical aptasensor using optimized surface chemistry for the detection of Mycobacterium tuberculosis secreted protein MPT64 in human serum. , 2019, Biosensors & bioelectronics.

[89]  E. McConnell,et al.  Highly Sensitive RNA‐Cleaving DNAzyme Sensors from Surface‐to‐Surface Product Enrichment , 2019, Chembiochem : a European journal of chemical biology.

[90]  T. Mészáros,et al.  Selective counting and sizing of single virus particles using fluorescent aptamer-based nanoparticle tracking analysis. , 2018, Nanoscale.

[91]  W. Tan,et al.  Magnetism-Resolved Separation and Fluorescence Quantification for Near-Simultaneous Detection of Multiple Pathogens. , 2018, Analytical chemistry.

[92]  Lingling Zhu,et al.  Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. , 2018, Biosensors & bioelectronics.

[93]  Nae-Eung Lee,et al.  Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone. , 2018, Biosensors & bioelectronics.

[94]  Meng Liu,et al.  A Paper Sensor Printed with Multifunctional Bio/Nano Materials. , 2018, Angewandte Chemie.

[95]  Carlos D M Filipe,et al.  Sentinel Wraps: Real-Time Monitoring of Food Contamination by Printing DNAzyme Probes on Food Packaging. , 2018, ACS nano.

[96]  G. Bayramoglu,et al.  Fast and Sensitive Detection of Salmonella in Milk Samples Using Aptamer-Functionalized Magnetic Silica Solid Phase and MCM-41-Aptamer Gate System. , 2018, ACS biomaterials science & engineering.

[97]  Yingfu Li,et al.  DNAzymes: Selected for Applications , 2018 .

[98]  S. Ramlal,et al.  Capture and detection of Staphylococcus aureus with dual labeled aptamers to cell surface components. , 2018, International journal of food microbiology.

[99]  Yingfu Li,et al.  Selection and characterization of DNA aptamers for detection of glutamate dehydrogenase from Clostridium difficile. , 2017, Biochimie.

[100]  Huaqiang Zeng,et al.  Aptamer-Based ELISA Assay for Highly Specific and Sensitive Detection of Zika NS1 Protein. , 2017, Analytical chemistry.

[101]  M. Ali,et al.  A Printed Multicomponent Paper Sensor for Bacterial Detection , 2017, Scientific Reports.

[102]  Haitao Wang,et al.  Orientation selection of broad-spectrum aptamers against lipopolysaccharides based on capture-SELEX by using magnetic nanoparticles , 2017, Microchimica Acta.

[103]  A. Salimi,et al.  A highly sensitive electrochemical immunosensor for hepatitis B virus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification. , 2017, Biosensors & bioelectronics.

[104]  Yingfu Li,et al.  Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes. , 2017, Accounts of chemical research.

[105]  Feng Xu,et al.  Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. , 2017, Biosensors & bioelectronics.

[106]  Leyla Soleymani,et al.  Mechanistic Challenges and Advantages of Biosensor Miniaturization into the Nanoscale. , 2017, ACS sensors.

[107]  Erqun Song,et al.  Dual-Recognition Förster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin-Gold Nanoclusters and Aptamer-Gold Nanoparticles. , 2017, Analytical chemistry.

[108]  T. Mészáros,et al.  Aptamers for respiratory syncytial virus detection , 2017, Scientific Reports.

[109]  G. Bayramoglu,et al.  Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. , 2016, Biosensors & bioelectronics.

[110]  S. Silverman,et al.  Catalytic DNA: Scope, Applications, and Biochemistry of Deoxyribozymes. , 2016, Trends in biochemical sciences.

[111]  Yang Song,et al.  Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters. , 2016, Analytical chemistry.

[112]  Yingfu Li,et al.  A Catalytic DNA Activated by a Specific Strain of Bacterial Pathogen , 2015, Angewandte Chemie.

[113]  A. Davydova,et al.  Aptamers against pathogenic microorganisms , 2015, Critical reviews in microbiology.

[114]  A. Abbaspour,et al.  Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. , 2015, Biosensors & bioelectronics.

[115]  Shengqi Wang,et al.  A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF). , 2015, Biosensors & bioelectronics.

[116]  Piotr Kopiński,et al.  Aptamers in Diagnostics and Treatment of Viral Infections , 2015, Viruses.

[117]  Zhouping Wang,et al.  Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. , 2014, Analytical chemistry.

[118]  W. Xu,et al.  Enzyme linked aptamer assay: based on a competition format for sensitive detection of antibodies to Mycoplasma bovis in serum. , 2014, Analytical chemistry.

[119]  Man Bock Gu,et al.  Detection of VR-2332 strain of porcine reproductive and respiratory syndrome virus type II using an aptamer-based sandwich-type assay. , 2013, Analytical chemistry.

[120]  C. Hamula,et al.  Selection and analytical applications of aptamers binding microbial pathogens , 2011, TrAC Trends in Analytical Chemistry.

[121]  S. Aguirre,et al.  Fluorogenic DNAzyme probes as bacterial indicators. , 2011, Angewandte Chemie.

[122]  B. Shen,et al.  Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus , 2009, Nucleic acids research.

[123]  Yingfu Li,et al.  Biologically inspired synthetic enzymes made from DNA. , 2009, Chemistry & biology.

[124]  Juewen Liu,et al.  Functional nucleic acid sensors. , 2009, Chemical reviews.

[125]  E. Alocilja,et al.  Aptasensors for detection of microbial and viral pathogens , 2008, Biosensors and Bioelectronics.

[126]  Itamar Willner,et al.  DNAzymes for sensing, nanobiotechnology and logic gate applications. , 2008, Chemical Society reviews.

[127]  Kate E. Jones,et al.  Global trends in emerging infectious diseases , 2008, Nature.

[128]  Yingfu Li,et al.  Nucleic acid aptamers and enzymes as sensors. , 2006, Current opinion in chemical biology.

[129]  R. Lequin Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). , 2005, Clinical chemistry.

[130]  X. Le,et al.  Detection of human immunodeficiency virus type 1 reverse transcriptase using aptamers as probes in affinity capillary electrophoresis. , 2001, Analytical chemistry.

[131]  G. F. Joyce,et al.  A general purpose RNA-cleaving DNA enzyme. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[132]  R R Breaker,et al.  A DNA enzyme that cleaves RNA. , 1994, Chemistry & biology.

[133]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[134]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[135]  LISzyme Biosensors: DNAzymes Embedded in an Anti-biofouling Platform for Hands-free Real-Time Detection of Bacterial Contamination in Milk , 2022 .