Chirality transitions and transport properties of individual few-walled carbon nanotubes as revealed by in situ TEM probing.

[1]  X. Bai,et al.  Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts , 2017, Nature.

[2]  O. Cretu,et al.  In situ cyclic telescoping of multi-walled carbon nanotubes in a transmission electron microscope , 2016 .

[3]  D. Golberg,et al.  Reversible Tuning of Individual Carbon Nanotube Mechanical Properties via Defect Engineering. , 2016, Nano letters.

[4]  Feng Zhang,et al.  Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution , 2016, Nature Communications.

[5]  Thomas Dienel,et al.  Controlled synthesis of single-chirality carbon nanotubes , 2014, Nature.

[6]  Feng Ding,et al.  Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts , 2014, Nature.

[7]  H. Zeng,et al.  Nanomaterial Engineering and Property Studies in a Transmission Electron Microscope , 2012, Advanced materials.

[8]  Y. Bando,et al.  Superstrong Low‐Resistant Carbon Nanotube–Carbide–Metal Nanocontacts , 2010, Advanced materials.

[9]  Anna Derbakova,et al.  A systematic procedure for determining the chiral indices of multi-walled carbon nanotubes using electron diffraction--each and every shell. , 2010, Ultramicroscopy.

[10]  Y. Bando,et al.  Tensile Tests on Individual Single‐Walled Carbon Nanotubes: Linking Nanotube Strength with Its Defects , 2010, Advanced materials.

[11]  Keita Inose,et al.  Determination of the chiralities of isolated carbon nanotubes during superplastic elongation process , 2010 .

[12]  Chang Liu,et al.  Carbon nanotube-clamped metal atomic chain , 2010, Proceedings of the National Academy of Sciences.

[13]  X. Bai,et al.  Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. , 2009, Journal of the American Chemical Society.

[14]  K. Mølhave,et al.  Electron irradiation-induced destruction of carbon nanotubes in electron microscopes. , 2007, Ultramicroscopy.

[15]  B. Yakobson,et al.  Pseudoclimb and dislocation dynamics in superplastic nanotubes. , 2007, Physical review letters.

[16]  Lu-Chang Qin Electron diffraction from carbon nanotubes , 2006 .

[17]  Z. Suo,et al.  Kink formation and motion in carbon nanotubes at high temperatures. , 2006, Physical review letters.

[18]  P. Ajayan,et al.  Carbon Nanotubes as High-Pressure Cylinders and Nanoextruders , 2006, Science.

[19]  M. Dresselhaus,et al.  Superplastic carbon nanotubes , 2006, Nature.

[20]  M. Dresselhaus,et al.  Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. , 2005, Physical review letters.

[21]  L. Qin,et al.  Accurate determination of atomic structure of multiwalled carbon nanotubes by nondestructive nanobeam electron diffraction , 2005 .

[22]  L. Qin,et al.  Symmetry of electron diffraction from single-walled carbon nanotubes , 2004 .

[23]  J. Zuo,et al.  Coherent nano‐area electron diffraction , 2004, Microscopy research and technique.

[24]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[25]  J. Zuo,et al.  Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction , 2003 .

[26]  S. Iijima,et al.  Linking chiral indices and transport properties of double-walled carbon nanotubes. , 2002, Physical review letters.

[27]  Philip G. Collins,et al.  Materials: Peeling and sharpening multiwall nanotubes , 2000, Nature.

[28]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[29]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[30]  S. Amelinckx,et al.  Electron diffraction and microscopy of nanotubes , 1999 .

[31]  M. Nardelli,et al.  Brittle and Ductile Behavior in Carbon Nanotubes , 1998 .

[32]  P. Lambin,et al.  Quantitative theory of diffraction by carbon nanotubes , 1997 .

[33]  T. Ichihashi,et al.  On the measurement of helicity of carbon nanotubes , 1997 .

[34]  P. Lambin,et al.  Calculating the diffraction of electrons or X-rays by carbon nanotubes , 1996 .

[35]  L. Qin Electron diffraction from cylindrical nanotubes , 1994 .

[36]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[37]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[38]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[39]  Richard J. Colton,et al.  On the electrochemical etching of tips for scanning tunneling microscopy , 1990 .

[40]  Sugihara,et al.  Electrical resistance in the c direction of graphite. , 1990, Physical review. B, Condensed matter.

[41]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[42]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[43]  C. Jin,et al.  Plumbing carbon nanotubes. , 2008, Nature nanotechnology.