Dimensionality Reduction Using the Sparse Linear Model

We propose an approach for linear unsupervised dimensionality reduction, based on the sparse linear model that has been used to probabilistically interpret sparse coding. We formulate an optimization problem for learning a linear projection from the original signal domain to a lower-dimensional one in a way that approximately preserves, in expectation, pairwise inner products in the sparse domain. We derive solutions to the problem, present nonlinear extensions, and discuss relations to compressed sensing. Our experiments using facial images, texture patches, and images of object categories suggest that the approach can improve our ability to recover meaningful structure in many classes of signals.

[1]  V. Bogachev Gaussian Measures on a , 2022 .

[2]  Brendan J. Frey,et al.  Non-metric affinity propagation for unsupervised image categorization , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[3]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[4]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[5]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[6]  Liang-Tien Chia,et al.  Kernel Sparse Representation for Image Classification and Face Recognition , 2010, ECCV.

[7]  James Bailey,et al.  Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance , 2010, J. Mach. Learn. Res..

[8]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[9]  Jiawei Han,et al.  Spectral Regression for Efficient Regularized Subspace Learning , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[10]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[11]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[12]  Richard G. Baraniuk,et al.  Signal Processing With Compressive Measurements , 2010, IEEE Journal of Selected Topics in Signal Processing.

[13]  DecompositionDavid L. Donoho,et al.  Uncertainty Principles and Ideal Atomic , 1999 .

[14]  Jiawei Han,et al.  Orthogonal Laplacianfaces for Face Recognition , 2006, IEEE Transactions on Image Processing.

[15]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[16]  Neil Genzlinger A. and Q , 2006 .

[17]  Wenjiang J. Fu Penalized Regressions: The Bridge versus the Lasso , 1998 .

[18]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[19]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[20]  F. M. Larkin,et al.  Weak probability distributions on reproducing kernel Hilbert spaces , 1972 .

[21]  Deng Cai,et al.  Tensor Subspace Analysis , 2005, NIPS.

[22]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[23]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[24]  Tommi S. Jaakkola,et al.  Weighted Low-Rank Approximations , 2003, ICML.

[25]  R. Tibshirani,et al.  REJOINDER TO "LEAST ANGLE REGRESSION" BY EFRON ET AL. , 2004, math/0406474.

[26]  Michael Elad,et al.  Optimized Projections for Compressed Sensing , 2007, IEEE Transactions on Signal Processing.

[27]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Guillermo Sapiro,et al.  Non-local sparse models for image restoration , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[29]  Guillermo Sapiro,et al.  Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations , 2009, NIPS.

[30]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[32]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[33]  Yihong Gong,et al.  Nonlinear Learning using Local Coordinate Coding , 2009, NIPS.

[34]  Guillermo Sapiro,et al.  Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization , 2009, IEEE Transactions on Image Processing.

[35]  Jieping Ye,et al.  Two-Dimensional Linear Discriminant Analysis , 2004, NIPS.

[36]  Francis R. Bach,et al.  A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization , 2008, J. Mach. Learn. Res..

[37]  B. Turlach Discussion of "Least Angle Regression" by Efron, Hastie, Johnstone and Tibshirani , 2004 .

[38]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[39]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[40]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[41]  A. Berlinet REPRODUCING KERNELS IN PROBABILITY AND STATISTICS , 2009 .

[42]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression (PIE) database , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[43]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Sebastian Nowozin,et al.  On feature combination for multiclass object classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[45]  Florian Steinke,et al.  Bayesian Inference and Optimal Design in the Sparse Linear Model , 2007, AISTATS.

[46]  Thomas S. Huang,et al.  Supervised translation-invariant sparse coding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[47]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[48]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Geoffrey L. Barrows,et al.  Wide-angle micro sensors for vision on a tight budget , 2011, CVPR 2011.

[50]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[51]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[52]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[53]  H. Zou,et al.  Addendum: Regularization and variable selection via the elastic net , 2005 .

[54]  Yuxiao Hu,et al.  Learning a Spatially Smooth Subspace for Face Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[56]  Guillermo Sapiro,et al.  Classification and clustering via dictionary learning with structured incoherence and shared features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[57]  Shuicheng Yan,et al.  Neighborhood preserving embedding , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.