QoS-based remote control of networked control systems via Profibus token passing protocol

This paper focuses on a quality-of-service (QoS)-based remote control scheme for networked control systems via the Profibus token passing protocol. Typically, token passing experiences random network delay due to uncertainties in token circulation, but the protocol has in-built upper and lower bounds of network delay. Thus, to ensure the control performance of networked control systems via the Profibus token passing protocol, the network delay should be maintained below the allowable delay level. As the network delay is affected by protocol parameters, such as target rotation time, we present here an algorithm for selection of target rotation time using a genetic algorithm to ensure QoS of control information. We also discuss the performance of the QoS-based remote control scheme under conditions of controlled network delay. To evaluate its feasibility, a networked control system for a feedback control system using a servo motor was implemented on a Profibus-FMS network.

[1]  Seung Ho Hong,et al.  Implementation of a bandwidth allocation scheme in a token-passing fieldbus network , 2002, IEEE Trans. Instrum. Meas..

[2]  Seung Ho Hong,et al.  Scheduling algorithm of data sampling times in the integrated communication and control systems , 1995, IEEE Trans. Control. Syst. Technol..

[3]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[4]  Eduardo Tovar,et al.  Real-time fieldbus communications using Profibus networks , 1999, IEEE Trans. Ind. Electron..

[5]  Johan Nilsson,et al.  Real-Time Control Systems with Delays , 1998 .

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  Mo-Yuen Chow,et al.  Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation - part I: networked control , 2004, IEEE Transactions on Industrial Electronics.

[8]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[9]  Seung Ho Hung Experimental performance evaluation of Profibus-FMS , 2000, IEEE Robotics Autom. Mag..

[10]  Hong Ye,et al.  Scheduling of networked control systems , 2001 .

[11]  Suk Lee,et al.  On-line fuzzy performance management of Profibus networks , 2001, Comput. Ind..

[12]  Wei Zhang,et al.  Stability of networked control systems , 2001 .

[13]  Suk Lee,et al.  Development of performance model for Profibus token passing protocol , 2003, IEEE International Conference on Industrial Informatics, 2003. INDIN 2003. Proceedings..

[14]  Charles L. Karr,et al.  Genetic Algorithm Frequency Domain Optimization of an Anti-Resonant Electromechanical Controller , 2003, GECCO.

[15]  Manel Velasco,et al.  Managing quality-of-control in network-based control systems by controller and message scheduling co-design , 2004, IEEE Transactions on Industrial Electronics.

[16]  Suk Lee,et al.  Timer selection for satisfying the maximum allowable delay using performance model of profibus token passing protocol , 2004, IEEE Transactions on Industrial Electronics.

[17]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Eduardo Tovar,et al.  Cycle time properties of the PROFIBUS timed-token protocol , 1999, Comput. Commun..

[19]  James F. Whidborne A genetic algorithm approach to designing finite-precision PID controller structures , 1999 .

[20]  Henry Shu-Hung Chung,et al.  A 31-level cascade inverter for power applications , 2002, IEEE Trans. Ind. Electron..

[21]  Suk Lee,et al.  Intelligent performance management of networks for advanced manufacturing systems , 2001, IEEE Trans. Ind. Electron..

[22]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[23]  Stefano Vitturi Some features of two fieldbuses of the IEC 61158 standard , 2000 .

[24]  Suk Lee,et al.  Integration of mobile vehicles for automated material handling using Profibus and IEEE 802.11 networks , 2002, IEEE Trans. Ind. Electron..

[25]  Asok Ray,et al.  Integrated Communication and Control Systems: Part I—Analysis , 1988 .

[26]  Suk Lee,et al.  Development of performance model for calculation of communication delay in Profibus token passing protocol , 2003, Comput. Stand. Interfaces.

[27]  Andreas Willig,et al.  Polling-based MAC protocols for improving real-time performance in a wireless PROFIBUS , 2003, IEEE Trans. Ind. Electron..

[28]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .

[29]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.