Invariantization of numerical schemes using moving frames
暂无分享,去创建一个
[1] Andrzej Marciniak,et al. Energy conserving, arbitrary order numerical solutions of theN-body problem , 1984 .
[2] Peter J. Olver,et al. Geometric Integration Algorithms on Homogeneous Manifolds , 2002, Found. Comput. Math..
[3] A Generalized W-Transformation for Constructing Symplectic Partitioned Runge-Kutta Methods , 2003 .
[4] R. Ruth,et al. Fourth-order symplectic integration , 1990 .
[5] J. Moser,et al. Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .
[6] Jacques Laskar,et al. A long-term numerical solution for the insolation quantities of the Earth , 2004 .
[7] G. Quispel,et al. Geometric integrators for ODEs , 2006 .
[8] K. Feng. Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .
[9] Peter J. Olver,et al. Geometric Foundations of Numerical Algorithms and Symmetry , 2001, Applicable Algebra in Engineering, Communication and Computing.
[10] P. E. Hydon,et al. Symmetries and first integrals of ordinary difference equations , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[11] Kevin Burrage,et al. An implementation of singly-implicit Runge-Kutta methods , 1980 .
[12] J. C. Simo,et al. Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .
[13] Mark J. Ablowitz,et al. On the Numerical Solution of the Sine-Gordon Equation , 1996 .
[14] G. R. W. Quispel,et al. Numerical Integrators that Preserve Symmetries and Reversing Symmetries , 1998 .
[15] Wojciech Rozmus,et al. A symplectic integration algorithm for separable Hamiltonian functions , 1990 .
[16] J. Marsden,et al. Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.
[17] B. Leimkuhler,et al. Geometric integrators for multiple time-scale simulation , 2006 .
[18] Donald Greenspan,et al. Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion , 1975 .
[19] P. Olver,et al. Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .
[20] E. Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[21] E. Cartan. La méthode du repère mobile, la théorie des groupes continus et les espaces généralisés , 1935 .
[22] Mark J. Ablowitz,et al. Regular ArticleOn the Numerical Solution of the Sine–Gordon Equation: I. Integrable Discretizations and Homoclinic Manifolds , 1996 .
[23] Pierre-Louis Bazin,et al. Structure from Motion: Theoretical Foundations of a Novel Approach Using Custom Built Invariants , 2002, ArXiv.
[24] Arieh Iserles,et al. On the Global Error of Discretization Methods for Highly-Oscillatory Ordinary Differential Equations , 2002 .
[25] C. D. Bailey. Application of Hamilton's law of varying action , 1975 .
[26] Curtis F. Gerald. Applied numerical analysis , 1970 .
[27] V. A. Dorodnitsyn. Finite Difference Models Entirely Inheriting Continuous Symmetry Of Original Differential Equations , 1994 .
[28] P. Olver. Classical Invariant Theory , 1999 .
[29] Chris Budd,et al. Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation , 2001 .
[30] P. J. Olver,et al. Foundations of Computational Mathematics: Moving frames — in geometry, algebra, computer vision, and numerical analysis , 2001 .
[31] Laurent O. Jay,et al. Inexact Simplified Newton Iterations for Implicit Runge-Kutta Methods , 2000, SIAM J. Numer. Anal..
[32] D. Manolopoulos,et al. A new semiclassical initial value method for Franck-Condon spectra , 1996 .
[33] J. Douglas Faires,et al. Numerical Analysis , 1981 .
[34] C. Scovel,et al. Symplectic integration of Hamiltonian systems , 1990 .
[35] M. Baruch,et al. Hamilton's principle, Hamilton's law - 6 to the n power correct formulations , 1982 .
[36] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[37] Discretizations preserving all Lie point symmetries of the Korteweg-de Vries equation , 2005, math-ph/0507033.
[38] Roman Kozlov,et al. Lie group classification of second-order ordinary difference equations , 2000 .
[39] Fernando Casas,et al. Cost Efficient Lie Group Integrators in the RKMK Class , 2003 .
[40] Jerrold E. Marsden,et al. Integration Algorithms and Classical Mechanics , 1996 .
[41] Bradley A. Shadwick,et al. Exactly Conservative Integrators , 1998, SIAM J. Appl. Math..
[42] C. Tsallis,et al. Breakdown of Exponential Sensitivity to Initial Conditions: Role of the Range of Interactions , 1998 .
[43] A. Iserles,et al. Lie-group methods , 2000, Acta Numerica.
[44] J. C. Simo,et al. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .
[45] Hamilton's Principle , 1968, Nature.
[46] J. C. Simo,et al. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .
[47] Mireille Boutin,et al. Numerically Invariant Signature Curves , 1999, International Journal of Computer Vision.
[48] Luc Vinet,et al. Lie group formalism for difference equations , 1997 .