Invariantization of numerical schemes using moving frames

This paper deals with a geometric technique to construct numerical schemes for differential equations that inherit Lie symmetries. The moving frame method enables one to adjust existing numerical schemes in a geometric manner and systematically construct proper invariant versions of them. Invariantization works as an adaptive transformation on numerical solutions, improving their accuracy greatly. Error reduction in the Runge–Kutta method by invariantization is studied through several applications including a harmonic oscillator and a Hamiltonian system.

[1]  Andrzej Marciniak,et al.  Energy conserving, arbitrary order numerical solutions of theN-body problem , 1984 .

[2]  Peter J. Olver,et al.  Geometric Integration Algorithms on Homogeneous Manifolds , 2002, Found. Comput. Math..

[3]  A Generalized W-Transformation for Constructing Symplectic Partitioned Runge-Kutta Methods , 2003 .

[4]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .

[5]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[6]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[7]  G. Quispel,et al.  Geometric integrators for ODEs , 2006 .

[8]  K. Feng Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .

[9]  Peter J. Olver,et al.  Geometric Foundations of Numerical Algorithms and Symmetry , 2001, Applicable Algebra in Engineering, Communication and Computing.

[10]  P. E. Hydon,et al.  Symmetries and first integrals of ordinary difference equations , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Kevin Burrage,et al.  An implementation of singly-implicit Runge-Kutta methods , 1980 .

[12]  J. C. Simo,et al.  Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .

[13]  Mark J. Ablowitz,et al.  On the Numerical Solution of the Sine-Gordon Equation , 1996 .

[14]  G. R. W. Quispel,et al.  Numerical Integrators that Preserve Symmetries and Reversing Symmetries , 1998 .

[15]  Wojciech Rozmus,et al.  A symplectic integration algorithm for separable Hamiltonian functions , 1990 .

[16]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[17]  B. Leimkuhler,et al.  Geometric integrators for multiple time-scale simulation , 2006 .

[18]  Donald Greenspan,et al.  Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion , 1975 .

[19]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[20]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[21]  E. Cartan La méthode du repère mobile, la théorie des groupes continus et les espaces généralisés , 1935 .

[22]  Mark J. Ablowitz,et al.  Regular ArticleOn the Numerical Solution of the Sine–Gordon Equation: I. Integrable Discretizations and Homoclinic Manifolds , 1996 .

[23]  Pierre-Louis Bazin,et al.  Structure from Motion: Theoretical Foundations of a Novel Approach Using Custom Built Invariants , 2002, ArXiv.

[24]  Arieh Iserles,et al.  On the Global Error of Discretization Methods for Highly-Oscillatory Ordinary Differential Equations , 2002 .

[25]  C. D. Bailey Application of Hamilton's law of varying action , 1975 .

[26]  Curtis F. Gerald Applied numerical analysis , 1970 .

[27]  V. A. Dorodnitsyn Finite Difference Models Entirely Inheriting Continuous Symmetry Of Original Differential Equations , 1994 .

[28]  P. Olver Classical Invariant Theory , 1999 .

[29]  Chris Budd,et al.  Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation , 2001 .

[30]  P. J. Olver,et al.  Foundations of Computational Mathematics: Moving frames — in geometry, algebra, computer vision, and numerical analysis , 2001 .

[31]  Laurent O. Jay,et al.  Inexact Simplified Newton Iterations for Implicit Runge-Kutta Methods , 2000, SIAM J. Numer. Anal..

[32]  D. Manolopoulos,et al.  A new semiclassical initial value method for Franck-Condon spectra , 1996 .

[33]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[34]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[35]  M. Baruch,et al.  Hamilton's principle, Hamilton's law - 6 to the n power correct formulations , 1982 .

[36]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[37]  Discretizations preserving all Lie point symmetries of the Korteweg-de Vries equation , 2005, math-ph/0507033.

[38]  Roman Kozlov,et al.  Lie group classification of second-order ordinary difference equations , 2000 .

[39]  Fernando Casas,et al.  Cost Efficient Lie Group Integrators in the RKMK Class , 2003 .

[40]  Jerrold E. Marsden,et al.  Integration Algorithms and Classical Mechanics , 1996 .

[41]  Bradley A. Shadwick,et al.  Exactly Conservative Integrators , 1998, SIAM J. Appl. Math..

[42]  C. Tsallis,et al.  Breakdown of Exponential Sensitivity to Initial Conditions: Role of the Range of Interactions , 1998 .

[43]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[44]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[45]  Hamilton's Principle , 1968, Nature.

[46]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[47]  Mireille Boutin,et al.  Numerically Invariant Signature Curves , 1999, International Journal of Computer Vision.

[48]  Luc Vinet,et al.  Lie group formalism for difference equations , 1997 .